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EMBEDDABILITY OF HIGHER-RANK GRAPHS IN GROUPOIDS, AND THE
STRUCTURE OF THEIR C*-ALGEBRAS

NATHAN BROWNLOWE, ALEX KUMJIAN, DAVID PASK, AND AIDAN SIMS

This paper is dedicated to our friend and mentor Iain Raeburn, whose guidance had a profound impact on us all.
We’d love to say more, but he’d have been squirming enough already.

ABSTRACT. We show that the C*-algebra of a row-finite source-free k-graph is Rieffel-Morita
equivalent to a crossed product of an AF algebra by the fundamental group of the k-graph. When
the k-graph embeds in its fundamental groupoid, this AF algebra is a Fell algebra; and simple-
connectedness of a certain sub-1-graph characterises when this Fell algebra is Rieffel-Morita equiv-
alent to a commutative C*-algebra. We provide a substantial suite of results for determining if a
given k-graph embeds in its fundamental groupoid, and provide a large class of examples, arising
via work of Cartwright, Robertson, Steger et al. from the theory of Ay-groups, that do embed.

1. INTRODUCTION

Since their introduction [26] higher-rank graphs, or k-graphs, have been a source of interesting
new higher-dimensional phenomena: in algebra [1, 13, 40|, dynamics [34, 23, 43, 44], C*-algebras
2, 12, 41], K-theory [16, 18, 35], topology [32, 33, 22, 28] and geometry [38, 45, 24]. However,
many natural questions about their structure theory remain difficult to unravel.

One such question, and the primary motivation for this paper, is: when can a k-graph C*-
algebra be realised, modulo Rieffel-Morita equivalences, as a crossed product of a commutative
C*-algebra? For 1-graphs, the answer is “always:” given a row-finite source-free directed graph F,
the middle two authors showed [25] that the C*-algebra of its universal cover F' is Rieffel-Morita
equivalent to a commutative AF algebra, and there is an action of the fundamental group m (E, v)
on C*(F) whose crossed product is Rieffel-Morita equivalent to C*(E). For k-graphs, the answer
is more nuanced, and is related to two other intriguing structural questions: when does a k-graph
embed in its fundamental groupoid, and when is the boundary of its universal cover Hausdorft?

Our main C*-algebraic theorem, Theorem 4.1, clarifies the relationships between these questions:
the C*-algebra C*(A) of any row-finite source-free k-graph is a crossed product of an AF' algebra
C*(3) by the fundamental group of A; if A embeds in its fundamental groupoid, then the AF
algebra C*(Y) is a Fell algebra; and if, additionally, a naturally-arising sub-1-graph of X is simply
connected, then the boundary of ¥ is Hausdorff, and C*(X) is Rieffel-Morita equivalent to a
commutative AF algebra. The point is that the first part of the program of [25] above goes through
smoothly for k-graphs: every k-graph A has a fundamental group 7 (A) [32] and a universal cover X
[33] that carries an action of 7(A), and when A is row-finite and source-free, the resulting crossed
product is Rieffel-Morita equivalent to C*(A) [26]. Our main contribution is the analysis of C*().
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Motivated by this, we study the question of when a k-graph A embeds in its fundamental
groupoid. Many k-graphs do not embed: we give three examples in Section 3.1; and any k-graph
containing a copy of one of these (of which there are many) also fail to embed. So we focus on
checkable sufficient conditions. We show that singly connected k-graphs always embed (Proposi-
tion 3.9(ii)), and highlight a surprising difference between k-graphs and 1-graphs: universal covers
of k-graphs need not be singly connected. We include a proof that 1-graphs always embed (Theo-
rem 3.14). We then show that many standard k-graph constructions preserve embeddability: cov-
erings (Proposition 3.13), affine pullbacks, cartesian products, crossed-products and skew-products
(Corollary 3.15), and action graphs (Corollary 3.18). The workhorse in this is Theorem 3.8 which
exploits the universal property of the fundamental groupoid and fundamental group. In Propo-
sition 3.25 we reduce the embeddability of a connected k-graph to group-embeddability of the
subsemigroup based at any vertex. Using Dilian Yang’s work [47] on k-graphs and Yang—Baxter
solutions, we show that there are many embeddable k-graphs for all k£ (Lemma 3.22). We are far
from a complete answer to the embeddability question. Johnstone’s general results [21] charac-
terise groupoid-embeddability of categories, but the hypotheses seem uncheckable: we gleaned no
practical conditions—either necessary or sufficient—from Johnstone’s work, beyond the neat result
of Lawson—Vdovina [29, Theorem 11.14] presented in Remark 3.24. One might hope for help from
Ore’s theorem [15, Proposition 11.3.11], but by the factorisation property, no interesting k-graphs
are Ore. Remarks 4.17 and 4.18 indicate how much we still do not know about embeddability.

Finally, as definitive general results about embeddability are still beyond reach, we present a
class of examples arising from the combinatorial objects used by Roberston and Steger to construct
higher-rank Cuntz—Krieger C*-algebras in [38] which first inspired the middle two authors to
develop the concept of a higher-rank graph. We show in Theorem 5.17 and Proposition 5.20 that
every Ag-group ['7 yields 2-graphs Ay and Y7, the latter being a cover of the former, and in
Corollary 5.19 that A7 embeds in its fundamental groupoid—Proposition 3.13 then shows that
Y7 embeds as well. We also prove that ¥+ is singly connected, and deduce that its C*-algebra
is type Iyp. The construction of Ay is related to a number of existing constructions. It is directly
inspired by [38, pp.135-136]. As discussed in [9, 38] a thick A,-building & carrying a vertex-
transitive action of a A,-group I'; arises from a finite projective plane (P, L), a bijection between
P and L, and a compatible triangle presentation 7 on P, the points of the projective plane,
arising from the local structure of the building (see [9, §3]). The Ay-group ' is generated by a
set indexed by P subject to the relations encoded in 7. The AQ—building 2 is constructed as an
augmented Cayley graph of I'7 with 2-simplices given by 7. Our A+ is isomorphic to the 2-graph
obtained from [26, Examples 1.7(iv)] from the 0-1 matrices M; of [38, p.135] (see Remark 5.18).
Geometric considerations suggest both that 3+ should be simply connected, and therefore equal
to the universal cover of Ay, and that its topological realisation should coincide with that of Z, so
it should have Hausdorff boundary; we leave this for future work. Our construction is also related
to the construction of k-graphs from groups in [31], but cannot be recovered from it: the covering
2-graphs in [31] are products of trees rather than Ay-buildings.

2. BACKGROUND AND PRELIMINARY RESULTS

2.1. Higher rank graphs. We write N for the additive monoid {0, 1, ...}. We denote the standard
generators of N¥ C Z* by €,..., ., and we write n; for the i'" coordinate of n € N¥. We write 1,
or just 1 for (1,...,1) € N*,
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A k-graph is a small category A equipped with a functor d : A — N satisfying the factorization
property: whenever d(\) = m + n, there exist unique u, v € A such that d(u) = m, d(v) = n, and
A = pv. This implies that A is cancellative. We write A" := d~1(n) for n € N¥. When d(\) = n
we say A has degree n. The factorisation property implies that A° is the set of identity morphisms,
which we call vertices. Elements of |J; A° are called edges. For u,v € A" we write uA := r~*(u),

Av = s71(v), and uAv := uA N Av.

Notation 2.1. For A € A and 0 < m < n < d()), we write A(m,n) for the unique element of A
such that A € A™\(m,n) AN~ We define A\(n) := A\(n,n) = s(\(0,n)).

Definition 2.2. The k-graph A is connected if the equivalence relation ~ on A° generated by
{(u,v) | uAv # 0} is A° x A°. A k-graph is strongly connected if uAv # () for all u,v € A°.

A morphism ¢ : Q@ — A between k-graphs is a functor such that dy(¢(\)) = dg(\) for all A € Q.
A quasi-morphism from a k-graph (Q,dq) to an ¢-graph (A,dy) is a pair (¢, f) consisting of a
functor ¢ :  — A and a homomorphism f : N¥ — N’ such that dy o ¢ = f odq. If A is a k-graph,
then AN := {\ € A : d()\) € N1} is a 1-graph and the natural inclusion AN < A together with
the map f : N — N* given by f(n) := nl is a quasimorphism.

Examples 2.3. (i) Let B, be the directed graph with BY = {u}, and B} = {fi,..., f.}. Its path
category B is a 1-graph, and coincides with the free semigroup F;" on n generators.

(i) Let Ay = {(m,n) € ZF x Z¥ . m < n}. Define r,s : Ay — ObjA; by r(m,n) = m,
s(m,n) = n, and for m < m < p € ZF define (m,n)(n,p) = (m,p) and d(m,n) = n — m.
Then (A, d) is a k-graph where Obj Ay, is identified with {(m,m) : m € Z¥} C Mor A,.

(iii) Similarly, Qx = {(m,n) € N¥* x N¥ : ;y < n} is a sub-k-graph of Ay

Ezample 2.4 (Skew-product graphs). Let A be a k-graph, G a group, and ¢ : A — G a l-cocycle
(functor). Then the set G x. A :={(g,\) : g € G, X € A}, under the structure maps

(2.1) s(g.A) = (ge(A), s(N), (g, A) = (g9,7(N), (9, A) - (9e(A), ) = (g, M), d(g, A) = d(A).
is a k-graph called the skew-product graph [26, Defintion 5.1]. Left translation by G on the first
coordinate of G x. A is an action of G by k-graph automorphisms.

There are two equivalent conventions for skew-product graphs in the literature: the other is [33,
Defintion 6.3]. In [33, Defintion 6.3] A x. G :={(\,g) : A € A, g € G} with structure maps

s(A9) = (s(A),9), (A g)=(r(A),c(N)g), (A c(Ng)-(19) = (Au,g), d(X g)=d(X).
It is simple to check that ¢(g, \) = (A, c(A)"tg™!) yields an isomorphism ¢ : G x. A — A x.G.
Ezample 2.5 (Monoidal 2-graphs). The following class of 2-graphs was introduced in [26, §6] and
later studied extensively by Yang et al. [14, 46, 47]. Fix ny,ne > 1. Let [n;] = {1,...,n;}, for

i =1,2. Let 6 : [ny] x [n2] = [na] x [n1] be a bijection. The monoidal 2-graph F, is the unique
2-graph such that (F)° = {v}, (F; ) ={e1,...,en}, (Fg)2={f1,..., fu,}, and

(2.2) e;fj = fyes whenever 0(i, 5) = (§',7).
Remark 2.6. In their early papers Yang et al. define F in terms of a bijection 6 : [n;] X [ng] —

[n1] X [ng] rather than [n{] X [ny] — [ng] X [n4].

An affine map f : N® — N¥ is a map of the form f(n) = An+ p for A € My;(N) and p € N,
The following proposition unifies the pullback construction of [26, Definition 1.9] (case p = 0) and
the p-dual graph of [3, Definition 3.2] (case A = 1I).
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Proposition 2.7 (Affine pullbacks). Let (A, d) be a k-graph and let f : N® — N¥ be an affine map
with f(0) =p € NF. Set f*(A) = {(\,n) : d(\) = f(n)} C A x N°. Then f*(\) is an (-graph, with
structure maps r(A,n) = [A(0,p), 0], s(A,n) = [A(d(N\) — p,d(N)),0],

(A0, d(A

s(
(2.3) (A, m) o (1, n) = (A0, d(X) = p)u, m +n) if s(A,m) = r(p,n),
and dg+(a) (A, n) =n. We have f*(A)° = {(X,0): X € AP}.

Proof. As in [26, Definition 1.9], the pullback A*(A) of A by the homomorphism A : N — N* is
an (-graph. By [3, Proposition 3.2], its dual p(A*(A)) is also an ¢-graph. As sets, p(A*(A)) =
{(A\,n) € A x N:dn(\) = An} = {(A\,n) € Ax N : d(\) = f(n)} = f*A. Direct calculations
show that this identification intertwines the structure maps above with those of p(A*(A)). O

Example 2.8 (Crossed-product graph). Let a : Z* — Aut A be an action of Z* on a k-graph A.
Then the set A x N with the structure maps

r(A,m) = (r(A),0), s(A,m) = (a™"(s(1)),0), (A, m)(p,n) = (Aa™(p), m+n), d(X,m) = (d(}), m)
is a (k + £)-graph, called the crossed-product graph A x, N (see [17]).

2.2. Fundamental groupoids, fundamental groups and universal covers. Every k-graph
A has a fundamental groupoid, defined as follows (see [42, Section 19.1] or [32, Section 3]).

Definition 2.9. Let A be a k-graph. There exists a groupoid II(A) and a functor i : A — II(A)
such that i(A%) = TI(A)Y, with the following universal property: for every functor F' from A into
a groupoid G, there exists a unique groupoid homomorphism F : II(A) — G such that Foi=F.
The pair (IT(A),4) is unique up to canonical isomorphism, so we refer to any such groupoid II(A)
as the fundamental groupoid of A.

The assignment A — II(A) is a functor from k-graphs to groupoids. Note that II(A) is denoted
G(A) in [32], but this clashes with the notation for path groupoids in Section 2.4 and [26].

Each k-graph also has a fundamental group; the standard definition, for connected k-graphs, is
as any one of the isotropy groups of its fundamental groupoid, as follows.

Definition 2.10. Let A be a k-graph. The pointed fundamental group m (A, v) of A at v € A is
the isotropy group 71 (A, v) := vII(A)v of TI(A) at v.

Definition 2.11. For X # (), the pair groupoid of X is T(X) := X x X, the simple transitive
groupoid with unit space {(z, ) : x € X} identified with X; it has structure maps

rley) =z, s(x,y) =y, (2,y)(y,2)=(,2), (z,9)" = (y,).

Remark 2.12. Suppose that A is connected and let v € A°. Then there exists a function w — v,
from A° to II(A), such that v, = v and 7(7,,) = w for all w. Any such function v determines an
isomorphism (g, (v, w)) — Yug7e from m (A, v) x T(A%) to TI(A) [33, Corollary 6.5].

The isomorphism class of 71 (A, v) is independent of v when A is connected, but the isomorphisms
m1 (A, v) = m (A, w) are noncanonical. However, each category also admits a canonical fundamental
group (elsewhere called the universal group of the category) defined abstractly as the universal
group generated by a cocycle on the category [5, 20]; our next result shows how the two are related.
In the next result, ~ is the relation on A° from Definition 2.2.
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Proposition 2.13. Let A be a k-graph. Let V C A° be a complete collection of representatives of
the equivalence classes for ~. Then the group

A) =P mAv)
veV
has the following universal property: there is a 1-cocycle k : A — m(A) whose image generates
m1(A) such that for any 1-cocycle ¢ from A to a group G there is a unique homomorphism ¢ :
m(A) — G such that c = ¢ok. If G is a group and ¢ : A — G a 1-cocycle with the same universal
property, then ¢ is an isomorphism of m(A) onto G.

Proof. First suppose that A is connected, and fix v € A% Let II(A) be its fundamental groupoid.
Remark 2.12 shows that there is an isomorphism ¢ : II(A) — (A, v) x, T(A%) such that
o(9vn") = (9, (u,w)) for all (g, (u,w)). Let p1 : m(A,v) x, T(A?) — m(A,v) be the pro-
jection map (7, (u,w)) — . Then there is a cocycle k : A — m (A v) given by k := p; o poi. Fix
n:=14(M)i(A2) "t i(An) € T (A, v). Then since y(x,) = i(v) = Y5(r,), we have

1= %) A)Ys00) () A2)Ys02)) T Tru E ) Ys0m) = P(A)e(A2) - p(An),

so the range of k exhausts m (A, v).

Let ¢ : A — G be a 1-cocycle into a group. The universal property of II(A) gives homomorphism
p: II(A) = G such that poi =c. So poyp™:m(Av) x, T(A°) = Gisa homomorphism. Define
Ly (A, v) = m(Av) x, T(A) by t,(9) = (g, (v,v)) and let ¢ := po =t oy,. Since ¢, is inverse
to p1 on m (A, v) x {(v,v)}, we have ¢! 0, 0 py 0 = idpaye. So ¢o k(X)) = poi(X) =c(N).

Now suppose that A is not connected. Let [v] denote the equivalence class of v € A° under ~. For
each connected component A, = [v]A[v], the above argument gives a 1-cocycle k, : A — 71 (A, v).
So @,cy kv 1 A = @,y m(A,v) is a 1-cocycle. Its image generates because its image in each
summand generates. Any l-cocycle ¢ : A — G into a group restricts to 1-cocycles ¢, : A, — G,
which induce homomorphisms ¢, : m1(A,,v) = G as above. Then é := €, ¢, satisfies ¢o k = c.

For the final statement, observe that the universal property of (G,¢) applied to k yields a
homomorphism % : G — m;(A) that is inverse to ¢. O

The following definitions appear in [33]. We include them for completeness.

Definition 2.14. Let A, >, I be k-graphs.

(i) A surjective k-graph morphism p : ¥ — A is a covering if for all v € X% p restricts to
bijections Yv — Ap(v) and v3 — p(v)A.
(ii) A covering p : ¥ — A is said to be connected if ¥ (and hence A) is connected.
(iii) If p: ¥ = Aand ¢ : I' — A are coverings, a morphism from (X, p) to (I',q) is a k-graph
morphism ¢ : ¥ — I" such that ¢ o ¢ = p.
(iv) A covering p : ¥ — A is universal if it is connected in the sense of (ii), and for every connected
covering ¢ : I' — A, there is a unique morphism ¢ : (3, p) — (I', ¢) in the sense of (iii).
Example 2.15. Let A be a k-graph, G a group, ¢ : A — G a 1-cocycle and G x. A the skew product.

There is a covering p : G x. A — A given by p(g,\) = X [33, 6.3]. The quotient G\(G x. A) by
translation in G is a k-graph, and p descends to an isomorphism p : G\ (G x. A) — A.

Theorem 2.16 ([6, Proposition A.19], [33, Theorem 2.7]). Fvery connected k-graph A has a
universal covering. A connected covering p @ X — A is universal if and only if the induced
homomorphism p, : m (%, v) — w1 (A, p(w)) given by p.([y]) = [p(7)] is the trivial homomorphism
for some, and hence every, v € X°.
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2.3. Simply connected k-graphs.
Definition 2.17. A k-graph A is simply connected if w1 (A, v) is trivial for every v € A°.

Theorem 2.18 ([33, Corollaries 5.5 and 6.5]). Let A be a connected k-graph.

(i) A connected covering p : ¥ — A is universal if and only if ¥ is simply connected.
(ii) Given v € A°, there exists a cocycle n : A — m (A, u) for which skew-product covering
p (A u) X, A= A of Example 2.15 is a universal covering.

We can characterise simply connected k-graphs using either fundamental groupoids or 1-cocycles.

Lemma 2.19. Let A be a connected k-graph. Then the following are equivalent:
(i) A is simply connected;
(11) v = (r(),s(7)) is an isomorphism II(A) = T(A°); and
(iii) for every group G, every l-cocycle ¢ : N — G is a coboundary in the sense that there is a

function b: A® — G such that b(r(\))e(\) = b(s(N)).

Proof. (i)=(ii). If A is simply connected, then by definition 7 (A, v) is trivial for all v, so the final
statement of Remark 2.12 gives (ii).

(ii) = (iii). Suppose that II(A) = T'(A°) and fix a 1-cocycle ¢ : A — G. By the universal property
of TI(A), there is a homomorphism ¢ : T(A%) — G that extends ¢ (that is, ¢ = ¢ o). Fix v € A"
Define b: A° — G by b(w) = ¢(v,w). For each A\ € A

c(A) = e(r(A), s(N) = e((r(A), v)(v, 5(A)) = b(r(A))~"b(s(N)),

giving b(r(A))c(N) = b(s(N)).

(iii) = (i). Suppose that every 1-cocycle on A is a coboundary. Fix v € A% As in Re-
mark 2.12, for each w € A%\ {v}, fix v, € I(A)¥, and put 7, = v. Define ¢ : A — 7(A,v)
by c¢(A) = %_(}\)l'(A)%(/\)- Then c¢ is a 1-cocycle so there is a map b : A° — 7(A,v) such that
c(A) = b(r(\))~'b(s())) for all A. By the universal property of the fundamental groupoid, ¢ ex-
tends uniquely to a 1-cocycle ¢ : TI(A) — (A, v) (that is, ¢ = ¢oi). By uniqueness it follows that

for all v € II(A), we have

e =) = (1) b(s(7)).
The first equation implies that the restriction of ¢ to m (A, v) is the identity map and by the second
equation the restriction is trivial. Hence, 71 (A, v) is trivial and so A is simply connected. O

2.4. The path groupoid G, and the C*-algebra C*(A). Let A be a row-finite source-free k-
graph. The infinite path space A>° of A is the space of k-graph morphisms x : £, — A under
the locally compact Hausdorff topology with basic compact open sets Z(\) := {z € A® : X\ =
2(0,d(\))}, indexed by A € A. For p € N¥, the shift map o? : A — A% is defined by oPx(m,n) =
x(m+p, n+p) for x € A* and (m,n) € Q; and p — o? is an action of N¥ by local homeomorphisms.

Elements z,y € A® are shift equivalent, written x ~ y, if Pz = 0% for some p,q € N¥. The
path groupoid G, is the Deaconu—Renault groupoid of the action p — oP:

Definition 2.20 ([26, Definition 2.7]). The path groupoid is
Gr = {(z,n,y) EA® X Z x A*® : o'z = 0™y, n={ — m},
with unit space G = {(z,0,x) : z € A*} identified with A*, with structure maps
reny) =2 s@ny) =y, (@ny)yla)=(@n+lz2), (zny) "=y -nz),
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and under the topology with basic open sets Z(u,v) = {(pz,d(p) — d(v),ve) : x € Z(s(u))}
indexed by pairs (i, v) € A x A such that s(u) = s(v).

The C*-algebra of A is defined via generators and relations.

Definition 2.21 ([26, Definitions 1.5]). A family of partial isometries {s) : A € A} is a Cuntz-
Krieger A-family if

(CK1) {s,:v € A%} is a collection of mutually orthogonal projections;
(CK2) sy, = syas, for all A\, u € A such that s(\) = r(u);
CK3) sisy = sg for all A € A; and
A )
(CK4) for all v € A” and n € N* we have s, = >, . an 2S5}

We write C*(A) for the universal C*-algebra generated by a Cuntz—Krieger A-family {s) : A € A}.
The groupoid G, is étale [26, Proposition 2.8], and C*(A) = C*(Ga) [26, Corollary 3.5(i)].

3. EMBEDDING RESULTS FOR HIGHER-RANK GRAPHS

In this section we develop tools for determining when a k-graph A embeds in II(A), and describe
classes of examples that do embed; we also present three examples—one from [32], one due to Ben
Steinberg, and one that is new—that do not embed.

3.1. Non-embeddings. Even a fairly elementary monoidal 2-graph A need not embed in II(A):

Ezample 3.1 ([32, Example 7.1]). Let A be the 1-vertex 2-graph with A®* = {d,e} and A®* =
{a, b, c} such that

(3.1) da =ad, db=be, dc=ae, ea=cd, eb=ce, ec=bd.

Using the first four relations from (3.1) and that the map i : A — II(A) is a morphism we obtain
i(a) = i(d)i(a)i(d) ™ = i(d)i(e) i(e) = i(d)i(b)i(e) ™ = i(h),

o i(a) =i(b) in II(A). The fifth equation in (3.1) gives i(d) = i(e), so equations two and five give

)
i(b) = i(c). Hence i(a) = i(b) = i(c) and i(d) = i(e). The degree map descends to an isomorphism
d : TI(A) — Z?; so the universal cover of A is isomorphic to Z? x4 A.

n

The next example, shown to us by Ben Steinberg, who attributes the idea to Mal’cev (see also
[29, Example 11.13]), is a monoidal 2-graph that does not embed even though its edge-set does.

Ezample 3.2 (Steinberg, private communication). Let A be the unique 1-vertex 2-graph with A®* =
{e1, ea,e3,e4} and A2 = {f1, fo, f3, fa}, and such that

(3.2) €afp = {fbea if (a,b) = (1,4), (4,1);

fa€p otherwise.
Since i : A — TI(A) is a functor, i(e,) " i(f.) = i(fy)i(ep) " for (a,b) = (1,2),(3,2),(3,4), so
i(er) (1) = i(fo)iea) T = ilen) Thilfz) = i fa)ilea) T

and then rearranging the outer terms gives

(3.3) i(fres) = i(f1)i(es) = i(fa)i(er) = i(faer).

Uniqueness of factorisations in A shows that fieq # fieq, so i is not injective.
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We show that ¢ is injective on A®' U A®2. For this, define ¢ : A*' UA®> — Z by c(e;) = c(fj) =J
for j = 1,...,4. Since c respects the equations (3.2), it extends to a functor ¢ : A — Z. By
Definition 2.9 there is a functor ¢ : II(A) — Z such that ¢ o7 = c¢. In particular, é(i(e;)) = j =

&(i(f;)) for all j. Hence (¢ x d) o4 : (A U A®) — Z? is injective. Thus i is injective on A%t U A%,

Ezample 3.3. By [19, Theorems 4.4 and 4.5], there is a unique 3-graph I' with the skeleton and
factorisation rules below (there are no 3-coloured paths, so the associativity condition is vacuous).

esfi = faei esf! = fie; (i

€49 = ga€; (i=1,2)
f3g2 =g3f2  fi92 = 93fs

fig1 =g3f1 fagr = g3fi

By Proposition 3.12(ii) below, the 2-coloured sub-2-graphs of I" are all embeddable: the Z-valued

cocycle on the blue-red graph carrying {f; : ¢ < 4} to 1 and all other edges to 0 is essential (see

Definition 3.10); the Z-valued cocycle on the red-green graph carrying {fi} U{f/:i > 2} to 1 and

all other edges to 0 is essential; and the trivial cocycle on the blue-green graph is essential.
However I' does not embed in II(I"): writing [z] for i(z) € II(A), we calculate:

Fllo] ™t = lgs] ' fs] = [follge] ™! = [fallea] 'eallgal ™ = [es] " [fallga) ' [e4]
= [es] " '[falledler] Mgl lea] = [es])[es][f1llgr] ' lea] " '[ea) = [fillgn]
So cancellation gives [fi] = [f ] We then have [f5] = [gs][fi]lg1] " = [gs][fi]lg2] ™" = [fs] and
[f1] = les][fillea] ™" = [es][fi][er] " = [fa], and then also [f5] = [es] ' [fi][ea] = [es]” 1[f][ o] = [fal.

Motivated by these examples, we seek conditions under which i : A — II(A) is injective.

3.2. Embedding singly connected higher-rank graphs.

Definition 3.4. A k-graph A is singly connected if there is at most one path between any two
vertices; that is, for all u,v € A° we have |uAv| < 1.

Singly connected k-graphs need not be connected. The vertex set of a singly-connected k-graph
is partially ordered by the relation < given by u < v if and only if uAv # 0.

Ezxample 3.5. Write {t; : i = 1,...n} for the generators of the free group F,,. Let ¢: B,, — F, be
the 1-cocycle such that ¢(f;) = ¢; for all i. Then F,, X, B, is singly connected.

There is a relationship between singly connected k-graphs, and the simply connected k-graphs
of Section 2.3, though neither condition implies the other.

Proposition 3.6. Let A be a connected k-graph and suppose that i : A — II(A) is injective. If A
15 simply connected, then it is singly connected.

Proof. Suppose that A is not singly connected. Then there exist distinct elements A, u € A such
that s(A) = s(u) and r(\) = r(u). Since i : A — II(A) is injective, i(\) # i(u) and thus
i(A)7Yi(n) € m(A, s(A\)\{s(N\)}. Hence, A is not simply connected. O

The reverse implication fails, as the following example illustrates.
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Example 3.7. Let E be the directed graph with E° = {u,v,w,z} and E* = {e, f, g, h} such that
s(e) =u=s(f), s(g9) =w=s(h), r(e) =v=r(h) and r(f) = 2 = r(g). Then the 1-graph E* is a
singly-connected 1-graph that is not simply connected since 71 (E*, u) = Z. Adding tails at both
w and w as in [4, Lemma 1.2] yields a source-free 1-graph with the same property.

We will use the next theorem, which exploits the universal property of the fundamental groupoid
from Section 2.2, to show that singly connected k-graphs embed in their fundamental groupoids.

Theorem 3.8. Let A be a k-graph and let G be a groupoid. If there is an injective functor
F:AN—G, theni: A —TI(A) is injective.

Proof. The universal property of the fundamental groupoid, yields a homomorphism F: II(A) — G
such that F' = F' o¢. Hence if F is injective, then ¢ is injective. U

Proposition 3.9. Let A be a connected k-graph. Then
(1) The canonical map ¢ : A — T(A°) is injective if and only if A is singly connected.
(i) If A is singly connected, then i : A — TI(A) is injective.
Proof. The first assertion follows by definition and the second follows from Theorem 3.8. OJ

Theorem 3.8 also allows us to deduce embeddability from the existence of a suitable 1-cocycle.

Definition 3.10. Let A be a k-graph, G' a countable group, and ¢ : A — G a 1-cocycle. We say
that c is essential if the restriction of ¢ to uAv is injective for all u,v € A°.

Ezxample 3.11. The 1-cocycle ¢ : B, — [F,, described in Example 3.5 is essential.

Proposition 3.12. Let A be a k-graph. Then the following are equivalent:

(i) the canonical cocycle k : A — w1 (A) is essential;
(ii) A admits an essential cocycle ¢ : A — G to a group G; and
(11i) i - A — TI(A) is injective.
For any essential cocycle ¢ : A — G as in (i1), G X, A\ is singly connected.

Proof. The implication (i) = (ii) is obvious.

For (ii) = (iii), suppose that ¢ : A — G is an essential cocycle into a group. Note that
G x T(A%) is a groupoid. Define j : A — G x T(A%) by j(\) := (e(A), (r(N), s(N\))); then j is a
functor. Since c is essential, j is injective, so i : A — II(A) is injective by Theorem 3.8.

For (iii) = (i), suppose that i : A — TI(A) is injective. Fix u,v € A and p # v in vAu. For
each w € [v] = s(II(A)"), choose 7, € TI(A)Y, with 7, = {v}. Define ¢ : A — m (A, v) by

. -1 .
o) = {W)Z(A)%m () € [o
e otherwise.

Then c is a cocycle. We have c(u)c(v) ™ = v,i(p) v, 'yt (V) v, = voi(u)i(v) =1y, 1. Since i is injec-

tive, we obtain ¢(u) # ¢(v); and then the universal property of x : A — II(A) in Proposition 2.13
implies that x(u) # (v). Hence, k : A — m(A) is essential.

For the final statement, suppose that ¢ : A — G is essential, and that r(g, \) = r(h, ) and
s(g,A) = s(h, ) in G x. A. Then

(g,?“()\)) = T(gv )‘) = T(h’ N) = (h,T(u)), and
(c(N)g, s(N) = s(g,A) = s(h, ) = (c(p)h, s(w)).
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So () =r(pw), s(\) = s(u), g = h and ¢(\)g = ¢(p)h. These last two equalities give c(A) = c(p).
Thus j(\) = j(1) and hence A = p. Therefore (g, \) = (h, 1) and so G X A is singly connected. [

3.3. More-general embedding results. In this section we investigate embeddability of k-graphs
that are not singly connected. We start with one of the most useful results in our toolkit, which
relies on the universal property of the fundamental groupoid given in Definition 2.9.

Proposition 3.13 (Lifting embeddability). Let A, be connected k-graphs and let p : ¥ — A be
a covering. Then iy : A — TI(A) is injective if and only if i : X — (X)) is injective.

Proof. Suppose that iy : A — II(A) is injective and that 0,0’ € ¥ satisfy ix(0) = ix(0o’). In
particular, s(o) = s(¢’); let u := s(o). By universality of II(X), there is a unique groupoid
morphism p : II(X) — II(A) such that poiy =iy o p. Hence

ia(p(o)) = plic(0)) = p(iz(0”)) = ia(p(0")).
Injectivity of i, forces p(o) = p(o”’). Since p is a covering, it is injective on s~!(u). So 0 = ¢’ and
hence iy : ¥ — II(X), is injective.

For the reverse implication suppose that iy : A — II(A) is not injective. Then there are distinct
A, A€ A such that iy (A) = ix(N). We may assume without loss of generality that ¥ is the universal
covering of A so that X is simply connected. Since ¥ is connected, r x s : II(X) — X0 x X°
is an isomorphism, so II(X) = T(XY). By Theorem 2.18(ii), given u € A°, there is a cocycle
n: A — m (A u) such that ¥ = m(A,u) x,, A and p is given by projection onto the second
factor. It follows that s(A) = s(\), r(A) = r(X) and n(A\) = n(N) (since n factors through i, and
in(A) =ix(N)). Identifying ¥ with the skew-product as above, set o = (1, A),0’ = (1,\) € &, so
0,0’ are distinct. We have

s(0) = s(1,4) = (n(A), s(A)) = (n(A), s(\)) = s(1, X') = s(o”)
and similarly r(o) = r(0’). So (r x s)(ix(0)) = (r x s)(ix(0’)). Since r X s is injective on iy, we
deduce that iy : X — II(X) is not injective. O

Our later results say that embeddability is preserved by various constructions of new k-graphs
from old ones. So we need to know that some basic classes of k-graphs, like 1-graphs, embed.

Theorem 3.14. Let A be a 1-graph. Then iy : A — TI(A) is injective.

Proof. Write A = | || A; as a disjoint union of connected graphs. For i = 1,...,n let ¥; be the
universal cover of A;. Since ¥ = | || ¥; is (the path category of) a disjoint union of trees, there
is at most one undirected path connecting any two distinct vertices. It follows that 3 is singly
connected and therefore embeddable by Proposition 3.9(ii). Hence, iy : A — II(A) is injective. O

Corollary 3.15. Let A be a k-graph, and suppose that iy : A — TI(A) is injective.
(i) Let f: N — N¥ be an affine map. Then i: f*(A) — I(f*(A)) is injective.
(i) If T is an L-graph and ip : I' — II(T') is injective, then inxr : A x I' — II(A x I') is injective.
(111) If ¢ : A — G is a 1-cocycle into a group, then igxp : G X. A — II(G %, A) is injective.
(iv) If o : N* — Aut(A) is an action, then there is an action & : Z' — Aut(II(A)) such that
Gy, 0ip =15 0 ay for n € NY. Both
in X ine A xo NO 5 TI(A) X0 Z°  and  ipy et A xo NE = TI(A x, N

are injective. Moreover, in X iye induces an isomorphism IT(A x, Nf) 2 TI(A) x, Z*.
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Proof. (i) Define i x id : f*(A) — II(A) x Z* by (i x id)(\,n) = (i(\),n). Then i x id is an injective
functor into a groupoid, so the result follows from Theorem 3.8.

(ii) The map i xipr : A xI' = II(A) x II(I") is an injective functor into a groupoid, so the result
follows from Theorem 3.8.

(iii) By universality of II(A), there is a cocycle ¢ : II(A) — G such that ¢ o iy = ¢. The skew-
product groupoid G x;II(A) is equal as a set to G x II(A), and idg xiy : G X, A — G xzII(A) is
a functor. Since i, is injective, so is idg Xy, so the result follows from Theorem 3.8.

(iv) Since the action a of N on A is determined by ¢ commuting automorphisms, it extends to
an action (also called a) of Z‘ on A. By functoriality this extends to an action & : Z* — Aut(II(A))
such that a,, oiy = 15 0 ay, for n € N*. It is routine to check that i, x iy is a functor; it is injective
because iy and iye are injective. So Theorem 3.8 implies that 75, e is injective.

To see that i X iy induces an isomorphism TI(A x, N) = TI(A) x,, Z*, note that the universal
property of II(A x,N¥) implies that i X iy¢ induces a homomorphism 7 : II(A x o N¢) — TI(A) x , Z°
such that i o inx,ne = ip X ine. We construct an inverse. The restriction ¢ := iy ne|axfo) 1 A =
II(A x, N is a functor, as is ¢y := iy, n¢|poxne. The universal property of TI(A) implies that
iaxoNe|axqoy induces a homomorphism ¢ : II(A) — (A X, N°); and ip. nefpoxn extends to a
homomorphism & : A° x Z* — TI(A x, N*). Routine calculations show that ¢ x & : II(A) x5 Z¢ —
II(A x4 NY) is a homomorphism inverse to i. O

Remark 3.16. Combining Theorem 3.14 and Corollary 3.15(iv), we see that crossed-product graphs
of 1-graphs always embed in their fundamental groupoids.

Ezxamples 3.17. We present two examples of Corollary 3.15(i).
(i) Define f : N> — N by f(a,b) = a+ b, and let A = f*(B,). By Corollary 3.15(i) f*(A)
embeds in its fundamental group since the 1-graph B, does by Theorem 3.14. Indeed, for
0 : [n] x [n] = [n] x [n] given by 0(i, j) = (i, 7), we have A = Fy.
(i) Let A be a 2-graph and define f : N> — N? by f(a,b) = (a,b) + 1. Then f*(A) is the dual
graph 1A described in [3, Definition 3.1]. So for the 2-graph A = Fj from (i) above, f*(F,)
embeds in its fundamental group by Corollary 3.15(i).

Corollary 3.18 (Action graphs). Let A be a k-graph. Let B,, be the 1-graph described in Exam-
ples 2.3(i). Let p+— a, be a functor from B, to Aut(A). Let I' = B, x A; define d : I' — NF+!
by d(p, \) = (|pl, d(N)); define r,s : T — T by r(p, ) = (u, au(r(N)) and s(p, A) = (u, s(N)); and
define composition in I' by

(3.4) (1, 0 (X)) (v, §) = (uv, AS).
Then (I',d) is a (k+ 1)-graph. If in : A — II(A) is injective, then ip : I' — TI(T') is injective.

Proof. 1t is routine to check that (3.4) determines an associative composition. The map d is
clearly a functor, and if d(u, \) = (a+ b, m+n), then factorising u = papp and A = A\, A\, with the
appropriate degrees, the factorisation (p, ) = (b, 0, (Am)) (4, An) is the unique factorisation of
(i, A) into morphisms of degree (a,m) and (b,n). So I' is a (k + 1)-graph.

Universality of II(A) implies that each o, extends to an automorphism of II(A). So « extends
to an action of II(B,) = F,, on II(A), with semidirect product groupoid II(B,,) x4 II(A). Then
ip, X iy is an embedding of I" in TI(B,,) X4 II(A). The result now follows by Theorem 3.8. O

Ezamples 3.19. (i) Fix m,n > 2. Let A = B,, be the 1-graph described in Examples 2.3(i). For
each f € B}, let a; be a permutation of B}, and extend this to a 1-cocycle B, — Aut(A)

m?
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in the only possible way. By Theorem 3.18 this data gives rise to a 2-graph I' that embeds
in its fundamental group. Define 0 : [n| x [m] — [m] x [n] by 0(i,j) = (j/,¢) if and only if
ay,(fj) = fp. Then T is isomorphic to the 2-graph F, of Example 2.5. In particular, F,
embeds in its fundamental group.

Ezample 3.20. Fix n > 2, and a permutation o € Bij([n]), the group of all bijections of the set [n].
Define 0 : [n] x [n] — [n] x [n] by 0(i,7) = (o(i), 7). This fits into the situation of Example 3.19,
so Fj embeds in its fundamental group.

Definition 3.21. Let X be a nonempty set. A map R : X? — X? is a (set-theoretic) Yang—Bazter
solution if

(R X ldx)(ldx X R)(R X ldx) = <1dX X R)(R X ldx)<1dX X R)
as maps on X3. For every permutation o of X there is a Yang-Baxter solution R given by
R(e, f) = (0(f),e); such solutions are called permutation-type Yang—Baxter solutions.

For details of the interplay between the Yang—Baxter equation and k-graphs see [47].

Lemma 3.22. Fiz a finite set X and a Yang-Bazter solution R : X? — X? on X. Fiz k > 2. Let
A) g =A{v}. Fori <k, let Ay ={i} x X. For (i,e) € A’y and (j, f) € A/ with i < j, set

(i,e)(4, f) = (4, [) (@, €) if Rle, f) = (f',€).
There is a unique k-graph Ay g with these edges and factorisation rules. If R is a permutation type
Yang-Baaxter solution, then i : Ay g — II(Ag g) is injective.

Proof. The first statement follows from [47, §4.1]. For the second statement we proceed by in-
duction. For k& = 2 this follows from [47, §4.1]. Now suppose inductively that Ay_; p embeds
in its fundamental groupoid. There is an automorphism « of Ay_; r such that a(i,e) = (i,0(e))
foralli < k—1ande € X. Fore € B|1X‘, let a. := o € Aut(Ay_1,). Corollary 3.18 yields a

k-graph I' = B|x| X Agx_1,z. Choose a bijection ¢ : B‘lX| — AZ}R. Then there is an isomorphism
I' — Ay g that agrees with ¢ on B|1X‘ C T and takes each (i,e) € Ay | , €T to (i +1,e) € AR
Corollary 3.18 implies that I" embeds in its fundamental groupoid, so Ay g does too. O

Remark 3.23. For a long time the literature on k-graphs lacked concrete examples with £ > 3 not
obtained from lower-rank graphs via the constructions of Corollary 3.15. Yang’s important insight
[47] remedied this situation: every Yang—Baxter solution yields k-graphs for arbitrary k, typically
not of the forms from Corollary 3.15. In particular, Lemma 3.22, uses Yang’s construction to see
that every finite permutation o yields a k-graph that embeds in its fundamental groupoid for each
k > 1. Taking o = id yields cartesian-product k-graphs, but most other choices of ¢ yield k-graphs
that do not arise from the constructions of Corollary 3.15.

Remark 3.24. Work of Lawson and Vdovina also yields many embeddable k-graphs. A monoidal
k-graph is rigid [29, page 37] if whenever e and f are edges of different degrees, there are unique
edges €', ¢” ', f" such that ¢'f = f'e and ef” = fe”. Theorem 3.8 and [29, Theorem 11.14]
combined imply that every rigid monoidal k-graph A embeds in II(A).

We finish the section by showing that a strongly connected k-graph A embeds in I1(A) whenever
the submonoid of endomorphisms at any vertex embeds in a group.

Proposition 3.25. Let A be a strongly connected k-graph and H a group. Fix v € A°. If there
exists an injective monoid homomorphism ¢ : vAv — H, then i : A — TI(A) is injective.
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Proof. The universal property of II(A) given in Definition 2.9 implies that there is a homomorphism
¢ i(v)II(A)i(v) — H such that ¢oi = c¢. Since A is strongly connected, and since II(A) is a discrete
groupoid, TI(A) is isomorphic to T(A°) x i(v)II(A)i(v). Post-composing this isomorphism with
id7(p0y X yields a groupoid homomorphism ¢ : II(A) — T'(A”)x H. Suppose that ¢(i(n)) = ¢(i(v)).
Fix A € vAr(p) and 7 € s(u)Av. We have

((v,v), e(Apr)) = ((v,0), e(i(AuT)) = q(i(ApT))
= q(i(Avr)) = ((v,0), (i(AvT))((v,0), c(AvT)).
Since c is injective, AuT = AvT and so u = v. Thus ¢ o 7, and therefore 1, is injective. OJ

Example 3.26. Consider the 2-graph A below with relations age = fay, aje = fag, bf = eb.

Then A is strongly connected. None of our results before Proposition 3.25 applies to show that A
embeds in II(A). Since eba; = bfa; = ba;_;e for each i, the monoid uAu C A has presentation

ulu = (e, bag, ba; : eba; = ba;_;e,i =0,1),

so is isomorphic to the semidirect product Fy x, N for the action « that interchanges {bayg, ba,},
the generators of 5. The action a extends uniquely to an action & of Z on Fy, and uAu = Fy x N
embeds in Fy x4 Z. So Proposition 3.25 implies that i : A — II(A) is injective.

4. C*-ALGEBRAIC RESULTS

Here we generalise [25, Corollary 4.14], which says that the C*-algebra of a connected row-finite
1-graph is Rieffel-Morita equivalent to a crossed product of a commutative C*-algebra by the
fundamental group of the graph. The situation is much more complicated in higher dimensions.

Let A be a connected row-finite source-free k-graph. Fix v € A°. By Theorem 2.18 (see [33,
Corollary 6.5]) there is a cocycle n : A — m (A, v) such that the skew-product m (A, v) x, A is
isomorphic to the universal cover 3 of A. It then follows from [26, Theorem 5.7] that C*(A) is
Rieffel-Morita equivalent to C*(X) x 7 (A, v). Our main theorem describes the coefficient algebra
C*(X) of this crossed product.

Theorem 4.1. Let A be a connected row-finite source-free k-graph, and let ¥ = m(A,v) X, A be
as above so that C*(A) is Rieffel-Morita equivalent to C*(3) x w1 (A, v).
(i) The C*-algebra C*(X) is AF.
(i) If A embeds in its fundamental groupoid TI(A), then C*(X) is type Iy and its spectrum has a
cover by zero-dimensional compact open Hausdorff subsets.
(iii) If A embeds in its fundamental groupoid TI(A) and XNt is simply connected, then C*(X) is
Rieffel-Morita equivalent to a commutative C*-algebra.

We use the next two results to prove parts (i) and (ii) of Theorem 4.1.

Proposition 4.2. Let I' be a row-finite source-free k-graph. If I' is simply connected, then there
is a map f: 0 — ZF such that d(\) = f(s(\)) — f(r(N\)) for all X € T. Moreover, C*(T') is AF.

Proof. Since d : ' — ZF is a cocycle, Lemma 2.19 ensures the existence of f. Now [26, Lemma 5.4]
implies that C*(I") is AF. O
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Ezample 4.3. Let A be the 2-graph of Example 3.1 (see [32, Example 7.1]). Recall that A does
not embed in its fundamental groupoid and the universal cover 3 = Z? x4 A is simply connected.
We claim that C*(X) is Rieffel-Morita equivalent to the UHF algebra Mg~ (in fact, C*(X) =
Mg~ ® K). For each n € N, set v, := nl and observe that as in the proof of [26, Lemma 5.4],
A, = C* {5y s(\) = vn}) X K(F2(s7(v,))). Moreover, for all n, A, C A, and the multiplicity
of the embedding is 6 (since |v,Av, 1] = 6). Since the sequence of v,,’s is cofinal in Z? we have

C*(%) 2 lim A, 2 lim K(E2(s7 (1)),
Hence, C*(X) is Rieffel-Morita equivalent to the UHF algebra Mg as claimed.

Proposition 4.4. Let I' be a row-finite source-free k-graph. If T is singly connected, then, for each
v €T, the corner s,C*(T)s, is an abelian C*-algebra isomorphic to C(Z(v)). Moreover, C*(T) is
type Iy, and Prim C*(T') admits a cover by zero-dimensional compact open Hausdorff sets.

Proof. Fix xz,y € '™ such that z(0) = y(0), and p,q € N¥. We claim that if o?(z) = 0%(y),

then p = ¢ and x = y. To see this, suppose that o”(x) = 0%(y). Then o?(z)(0) = 0%(y)(0). Let

u = z(0) = y(0) and v := oP(x)(0) = ¢%(y)(0). Then z(0,p),y(0,q) € ul'v. Since I is singly

connected, z(0,p) = y(0,q). Hence, x = z(0, p)o?(x) = y(0,¢)0?(y)(0) = y, and the claim holds.
Now recall from [26] that '™ = G¥, and that for v € %, we have

Orlzw ={v € Gr:s(v),r(v) € Z(v)},

Sv = Xz@w) C Co(GP), and s,C*(T')s, = C*(Gr|z()). By the first paragraph, gﬂ%(v) >~ Z(v). Hence

C*(Gr|zw)) = C(Z(v)). So for each v € I', the ideal I, generated by s, is Rieffel-Morita equivalent

to the abelian C*-algebra C(Z(v)). Since C*(I') is generated by the ideals I,, C*(I") is type .
By definition of the hull-kernel topology, the ideals I, yield a cover of Prim(C*(T")) by open sets

I, = Prim([,). Since each I, is Rieffel-Morita equivalent to C(Z(v)), each Prim([,) = Z(v) is a
zero-dimensional compact open Hausdorff subspace of Prim(C*(I")). O

Proof of Theorem 4.1 (i) and (ii). Proposition 4.2 for I' = ¥ gives (i). If A — II(A) is injective

then so is ¥ — TI(X) by Proposition 3.13. Since X is simply connected, Proposition 3.6 implies
that ¥ is singly connected; so Proposition 4.4 for I' = ¥ gives (ii). O

To prove Theorem 4.1(iii), we will argue that the spectrum C*(X)" is Hausdorff: then The-
orem 4.1(2) shows that C*(3) is Rieffel-Morita a continuous-trace C*-algebra with totally dis-
connected spectrum, and the Dixmier-Douady theorem will show that C*(X) is Rieffel-Morita
equivalent to Co(C*(X)"). We will argue that Co(C*(X)") = ¥N/Gym, and use the additional
hypothesis that N is simply connected to prove Theorem 4.1(3). We do not know whether this
additional hypothesis is automatic; certainly, even for 1-graphs, being singly connected does not
guarantee that the associated C*-algebra has Hausdorff spectrum:

Ezample 4.5. Let E be the directed graph (pictured below) such that
o £°={uy,v,:n€Z}J{w,;:n€Zandi>0}, and
o E'={en, fu,Gn,hn :n € ZY U{ky,; :n € Z and i > 0},

and such that for n € Z and 7 > 0,

T(GN) = S(en—l) = r(gn) = Unp, T(fn) = S(fn—l) = T(hn) = Unp,
S(Qn) = S(hn) = T(kn,o) = Wn,0, 8<knz) = 'f’(kn,zﬂ) = Wpi+1-
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wW—1,0 w-1,1 wW—1,2

This graph F is singly connected. Define z,y € E* by © = egejey -+ and y = fofifo---. Then
[z] # [y] in gg?) /Gr . We claim that they cannot be separated by disjoint open sets. To see this,

for n € Z, let z, = knokniknz---. We will show that [z,] — [z] and 2z, — [y] as n — oco. By
symmetry, we just have to show that [z,] — [z]. For this, just note that [z,] = [ege1 - - - €n_19n2n],
and we have lim,, . €péq ... €, 192, = €9€169- -+ = .

We have C*(E) = C’*(QE) by [27, Prop081t10n 4.1]. Since C*(E) is type Iy, its spectrum is

homeomorphic, by [11, Corollary 4.2], to the orbit space QJ%O)/QE of Gg, which we just saw is not
Hausdorff. Note that E is not simply connected (for example eqgih; " fo  hogy ™ € TI(E*)™ \ {uo}).

Example 4.5 suggests a Hausdorffness criterion (Lemma 4.7). As this criterion is not easy to
check, in Theorem 4.8, we specialise to singly connected k-graphs and recast it in terms of the
following relation on vertices, which permeates analyses of ideals of k-graph C*-algebras [36].

Notation 4.6. For T" a k-graph, we define a relation < on I'° by v < w if and only if vT'w # 0.

Lemma 4.7. Let T be a row-finite source-free k-graph, and let Gr be its k-graph groupoid. The
orbit space I'™°/Gr is Hausdorff if and only if for every pair of infinite paths x,y € I'>° such that
[z] # [y], there exists N € N¥ such that the vertices x(N) on x and y(N) on y have no common
upper bound with respect to <, in the sense that s(u) # s(v) for all p € x(N)I' and v € y(N)T.

Proof. We have [z] = [y] if and only if ¢ (z) = 0™(y) for some m,n. So it suffices to fix z,y
such that o™ (z) # o"(y) for all m,n, and show that [z] and [y] can be separated if and only if
there exists IV as in the statement. Suppose that there is no such N. For each N € N*, choose
pun € z(N)I' and vy € y(N)T with s(uy) = s(vy), and zy € s(un)I'*. Then z(0, N)uyzy —
and y(0, N)vyzy — y. Since each [2(0, N)unzn] = [z2n] = [y(0, N)vyzy], this forces [zy] — [z]
and [zy] — [y]. Now suppose that there exists N as in the statement. Then ¢(Z(z(0,N))) and
q(Z(y(0,N))) are disjoint open neighbourhoods of [z] and [y] in T'*°/Gr. O

Recall that a filter for a partially ordered set (X, <) is a nonempty subset F' C X such that

(a) for all u,v € F there exists w € F' such that u,v < w;
(b) if v e F and u < v, then u € F.

A filter F' for < is called an ultrafilter if
(¢) F is not properly contained in any other filter F” for (X, <).

If T is singly connected, then < is a partial order on I'°. We show that elements of I'>°/Gr
correspond with ultrafilters for (I'°, <), and use this to characterise Hausdorffness of I'*°/Gr.
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Theorem 4.8. Let I" be a singly connected row-finite source-free k-graph. Then the ultrafilters for
(% <) are exactly the sets [z]° := {r(y) : y € [z]} indexed elements x € T>°. Moreover, I°/Gr is
Hausdor{f if and only if for every pair U,V of distinct ultrafilters of (T°, <) there is a pair u € U
and v € V with no common upper bound with respect to <.

Proof. For the first statement, first fix z € T, If vy, vy € [x]°, then v; = r(ac™(z)) and vy, =
r(Bo"(z)) for some «, 8, m,n and then w = (6™ (x)) € [z]° satisfies v;['w # @ by definition; so
[2]° satisfies (a). If w € [z]° and v € TV satisfy v < w, say a € vI'w, then since w € [z]° we have
w = r(Bo™(z)) for some B,n and so v = r(afo™(z)) € [z]% so [x]° satisfies (b). Suppose that F
is a filter for (T, <) containing [z]®. Fix v € F'; we must show that v € [z]°. Since v,z(0) € F
there exists w € F with v < w and z(0) < w, and by (b), if w € [2]° then v € [z]°; so we just
have to show that w € [7]°. Fix a € 2(0)T'w. Then r(c%¥(z)) € [x]° C F. So there exists w’ € F
such that r(c%)(z)),w < w'; say u € 7(c¥®(z))Tw’ and v € wl'w'. So av and z(0,d(a))u both
belong to x(0)['w’. Since I is singly connected, this forces av = x(0,d(«))u, so the factorisation
property forces (0, d(a)) = a; hence w = s(a) = s(z(0,d(a))) € [z]°.

Now fix an ultrafilter F for ('Y, <). Enumerate F' = (v1,vs,...), put w; = v; and inductively
use (a) to choose w;; 1 € F such that v;y1,w; < wipq. So (w;); is an increasing sequence such that
every v € I satisfies v < w; for some ¢. For each 7, use that w; < w;;1 to fix oy € w;l'w;yq, let
Wi = ...y, and choose y; € Z(p;) € I'*°. Since (y;); belongs to the compact set Z(v;) it has a
convergent subsequence y;, — y € Z(v1). We claim that F' = [y]°. By (c) it suffices to show that
F C[y]°. So fix v € F. Then v = v,, < w,, for some m € N. Choose [ so that i > m. For I’ > 1
we have y;, € Z(p;,) € Z(ps,). Hence y € Z(py,). So wy, = s(p;,) = r(c?%4)(y)) € [y]°. By choice
(w;);, and I, we have v < w,, < w;,. So (b) gives v € [y]°. This proves the first statement.

For the second statement, by Lemma 4.7, it suffices to show that for all z,y € T'*® with [z] # [y],
there exists N such that s(x(N)I') Ns(y(N)I') = 0 if and only if, for all pairs U # V of ultrafilters
of (T, <) there exist u € U and v € V with no common upper bound with respect to <.

First suppose that for every pair x,y € I'*° there exists N such that s(u) # s(v) for every
p € z(N)I' and v € y(N)I'. Fix ultrafilters U # V, and fix z,y € '™ with U = [z]® and
V = [y]°. Fix N such that s(u) # s(v) for every u € x(N)[' and v € y(N)I'. Then v = z(N) € U
and v = y(N) € V have no common upper bound. Now suppose that for every pair U # V of
ultrafilters, there exist v € U and v € V with no common upper bound. Fix z,y € I'* with
U=Iz]and V = [y|°. Fixu € U and v € V with no common upper bound. Fix 2’ € [z]
and ¢ € [y] with 7(z') = » and r(y') = v, and m,m’ and n,n’ such that ¢™(z) = o™ (2') and
o™(y) = o™ (y'). Fix N > m,n. Then ul'z(N) # () and vI'y(N) # 0. Since u,v have no common
upper bound, nor do z(N) and y(N); so s(p) # s(v) for all p € x(N)I' and v € y(N)T. O

Remark 4.9. Lemma 4.7 gels with [25, Proposition 4.3]: if E is a simply connected row-finite
source-free directed graph, then £*°/Gp is Hausdorff. We prove the contrapositive. Suppose that
E*/Gg is not Hausdorff. Since E is a 1-graph, i : E* — TI(E*) is injective. Corollary 4.7 gives
x,y € E* such that 6™ (x) # o™(y) for all m,n, and puy € x(N)E* and vy € y(N)E* such that
s(un) = s(vn) =: wy. We first claim that there exists Ny such that z(n) # y(m) for all m,n > Ny.
To see this, suppose that there are increasing sequences (n;), (m;) such that z(n;) = y(m;) for all 4.
Since FE is singly connected, x(n;, niy1) = y(m;, m;41) for all 4; so 0™ (x) = 0™ (y), a contradiction.
So by replacing x,y with o™°(x) and o™°(y), we may assume that z(m) # y(n) for all m, n.
Hence each wy is exactly one of z, y; without loss of generality, wy is not on z. Let a = x(0, |uo|)
and 5 = y(0, |vg|). Then Malamuo‘y‘;&'ﬁ_lyo € (II(E))y0. We show that Malamwu‘;}'ﬁ_lyo # wWo.
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Since r(pyu) = (|po]) # y(|vo|) = r(Yy)), in reduced form, [L|M0|l/|;j‘ = eyA~! where e € E' is the

first edge of p,,|. Similarly, since wy = s(1p) # (|uo|) = s(e), in reduced form, pg'a = (~Inf
where f is the last edge of a and (,n € E*. So in reduced form uo_lozm“ow';ol‘ = (" nfeyd ™l In

particular, the word fe appears in the reduced form of p 104/1‘ nolV}y 01| By, so this is a nontrivial
element of (II(E));°. Hence E is not simply connected.

Remark 4.10. The argument of the preceding remark does not go through for k-graphs because
there is no canonical reduced form for elements of the fundamental groupoid of a k-graph.

For 1-graphs E* we can use Remark 4.9 to check Hausdorffness of E*/Ggp = C*(E*)". So it
helps to relate Hausdorffness of the orbit space of a k-graph to that of a natural sub-1-graph

Proposition 4.11. Let ' be a row-finite source-free k-graph. Suppose that " is simply connected.
Then T /Gr is Hausdorff if and only if (T™1)*°/Grw is Hausdorff.

To prove this, we show that ' /Gr is homeomorphic to a clopen subset of (T™1)* /G,

Lemma 4.12. Let I" be a row-finite source-free k-graph. Suppose that I' is simply connected. Let
f:T% — ZF be a function such that d(\) = f(s(\)) — f(r(X\)) for all X\ € T as in Proposition 4.2.
Let E be the directed graph such that E° = f~Y(Z1) and E' = E°TY. Let j : E* — T be the
map such that j(x) is the unique infinite path such that j(x)(0,n-1) = xyxe-- -2, for alln € N
(see [26, Remark 2.2]). Then j descends to a homeomorphism j : E® /Gy — I /Gr.

Proof. The map j restricts to a homeomorphism vE* — vI'*® for each v € E°, so is continuous.

We claim that if x,y € E* then j(z) ~g, j(y) if and only if  ~g, y. To see this, fix x,y € E>.
Then j(x) ~g. j(y) if and only if there exist m,n € N¥ such that o™(j(x)) = 0™(j(y)). Since
f(r(e™(j(x))) = f(r(z)) +m for all m € N¥ and similarly for y, and since f(r(z)), f(r(y)) € Z1,
we deduce that j(z) ~g. j(y) if and only if there exist m,n € N* such that o™ (j(z)) = 0"(j(y))
and m —n € Z1. Since m —n € Z1 if and only if there exists p € N* such that m +p,n +p € N1,
we deduce that j(z) ~g. j(y) if and only if 0% (j(x)) = o®1(j(y)) for some a,b € N; that is, if and
only if 0%(x) = o®(y) for some a,b € N. Hence j(x) ~g, j(y) if and only if x ~g, . It follows that
j descends to a continuous function j : E* /Gy — I /Grp.

Fix p : I'® — NF satisfying f(v) + p(v) € Z1 for all v. For # € '™ and j € N, let 7; :=
oPr@)((j — 1)1,51) € E', and define h(z) := Z139--Tp--- € E®. As x ~— p(r(z)) is locally
constant, A is continuous. Since 67(®)(x) ~g,. x for all x, the claim above shows that z ~g. y if and
only if h(x) ~g, h(y), so h descends to a continuous function & : T°°/Gr to E*/Gg. It is routine
to check that h and j are mutually inverse: ho j = idge, and [j o h(z)] = [07®)(x)] = [z] for all
x € I'*°. In particular, j descends to a homeomorphism as claimed. 0

Proof of Proposition 4.11. Resume the notation of Lemma 4.12. It suffices for us to show that
(TNYY>° /Grwa is Hausdorff if and only if £ /G is Hausdorff.

For p € Z*, let V,, := f~'(p+Z1) C T° (so Vy is V in Lemma 4.12). If p — ¢ € Z1, then
V,INV, = 0. So if x € V,I'™ and y € V,I'™ then o' (x) # o' (y) for all a,b € N and hence
[]g.sa 7 [Ylg.n, - Hence the sets {V,(TN)>e . p € ZF' x {0} } have mutually disjoint open images
in (TN1)*> /G So it suffices to show that each of these images is Hausdorff.

Let g : (TN1)>° — (I'N1)°° /G be the quotient map. By assumption E*/Gp = q(Vo(TN1)*>) is
Hausdorff, so it suffices to fix p € Z*~!\ {0} and show that ¢(V,I'N)>) = ¢(V,'N)>).
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Since V,, = V4 41 for all a € N, we may assume that p > 0. Fix n € N¥ such that p+n € Z1. Then
P VpI'™® — V,I'>° and o™ : V,I'* — V,,,['*° = V'™ are continuous. Using [26, Remark 2.2], we
can identify VI with V,,(TN1)> and Vo' with V(I'!)>° and these identifications are compatible
with the shift maps.

If ¥ ~¢g ., y, then o?(z) ~g ,, oP(y) and similarly for n, so o and o™ descend to continuous
maps 67 : q(VoI'™)> — ¢(V,I™)> and 6" : q(V,I™)> — ¢(VoI'™™)>®. Since x ~g ,, o™ (z) =
oP(0™(x)) we see that 67 0™ is the identity map on ¢(V,I'")*>° and similarly 67 0™ is the identity
map on ¢(VoI'™)>®. So 67 and ¢" are mutually inverse, and hence homeomorphisms. O

Corollary 4.13. Let T" be a row-finite source-free k-graph. Suppose that both I' and the sub-1-graph
'™ gre simply connected. Then '™ /Gy is Hausdorff.

Proof. Proposition 4.2 gives f : I — Z* such that d(\) = f(s(\))— f(r(\)) for all A € . Let E be
the directed graph such that E° = f~1(Z1) and E' = E°T!. Lemma 4.12 gives I'*/Gr = E*/Gpg.
Since E* is a sub-1-graph of the simply connected graph I''! | it is simply connected. Hence E* /Gy,
is Hausdorff by [25, Lemma 4.2] (see Remark 4.9) and thus I'*°/Gr is Hausdorff. O

Ezxample 4.14. Surprisingly, simple connectedness of I' and of ' are independent conditions. For
the monoidal 2-graph A of [32, Example 7.1] (Example 3.1), we have an isomorphism II(A) = Z?
that intertwines ¢ : A — II(A) with d : A — N*> C Z% So I' := Z? x4 A = 7(A) x; A is simply
connected. But '™ is the graph with vertices {v,, : m € Z?} and six parallel edges from v,, 1 to
vy, for each m € Z2, so is not simply connected. In the other direction, let A; be the 1-graph with
vertices Z and edges e,, with s(e,) = n+1 and r(e,) = n, and define [ : N> — N by [(m,n) = m+n.
Then the 2-graph T := [*(€);) has fundamental group Z generated by (e, (1,0))(eq, (0,1))7, so is
not simply connected, but I'"! is a disjoint union of copies of €, so is simply connected.

Remark 4.15. In the context of Corollary 4.13, simple connectedness of I'! is equivalent to that
of E* as in Lemma 4.12. Also, as in the proof of Proposition 4.11, the orbit space (I'1)*° /G is
a topological disjoint union of copies of E*/Gp indexed ZF/71.

Proof of Theorem 4.1(iii). As in the proof of (2), since A — II(A) is injective, X is singly connected,
and C*(X) is type Ip. The proof of Proposition 4.4 shows that Gy, has trivial isotropy. Hence
the spectrum of C*(X) is homeomorphic to the orbit space 3°°/Gy [11, Corollary 4.2]. Now,
since XM is simply connected, Corollary 4.13 implies that ¥>°/Gy, is Hausdorff. So C*(X) is
a continuous-trace C*-algebra. Since X := £°/Gy is zero-dimensional, Hs(X,Z) = {0}, and
hence the Dixmier-Douady invariant 6(C*(X))) € Hs(X,Z) is trivial. So by the Dixmier-Douady
theorem [37, Corollary 5.58], C*(X) is Rieffel-Morita equivalent to C'(X*°/Gy). O

Remark 4.16. A related realisation of C*-algebras of k-graphs (and more general categories) as
crossed products of abelian algebras by partial actions of their fundamental groups appears in |7,
Theorem 4.17]. Interestingly, embeddability also crops up there, for different reasons.

Remark 4.17. Tt seems hard to nail down the relationships between the key hypotheses in this
section: simple connectedness of I' and of I'"!, and embedding of ' in TI(T").

For example the following two assertions both seem reasonable: that if I" is simply connected,
then the 1-dual 1" obtained from Proposition 2.7 for f : n +— n + 1 is also simply connected; and
that 1I" always embeds in II(1I") (after all, 1I' 3 X — (7()),d(X), s()\)) is injective on |J, ., ',
and this map descends to II(I'), so the skeleton and factorisation rules are preserved in II(T')).
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But at most one of these assertions is true in general: consider the skew-product I' := Z? x4 A of
Example 3.1; we show that if 1T" is simply connected, then it does not embed in IT(1T).

Since 1T is canonically isomorphic to the skew-product Z? x4 (1A), if 1T is simply connected,
then Z? x4 (1A) is simply connected, forcing (A, v) = Z?. But inspection of the skeleton of
1A shows that eeec and eedec are distinct blue cycles based at the vertex ec € 1A, so generate a
sub-semigroup of 1A isomorphic to F§, which cannot embed in Z2.

Remark 4.18. The preceding remark is exemplary of a number of seemingly elementary questions
that we have been unable to resolve. For example:

(i) If T is simply connected and embeds in II(T"), is ['*°/Gr Hausdorff?
(ii) If both T" and TN are simply connected, does I' necessarily embed in IT(I")?
(iii) Which, if either, of the two assertions mentioned in Remark 4.17 is correct?
(iv) Does 1I" always embed in I1(1I")7

5. Ay-GROUPS

In this section we construct coverings 7 — As of 2-graphs corresponding to As-groups I'r.
These groups arise from free, vertex-transitive actions on buildings. We show that >+ and Ay
both embed in their fundamental groupoids, and that Y+ is always singly connected so that its
C*-algebra is of Type Ij.

The Ay-groups are built from finite projective planes. A finite projective plane (P, L) of order ¢q
consists of finite sets P of points and L of lines with |P| = |L| = ¢*> + ¢+ 1, and a relation € from
P to L—if p € [, we say p lies on | and that [ contains p—such that any two points lie on exactly
one common line, any two lines contain exactly one common point, and there exist four distinct
points of which no single line contains more than two. Each line necessarily contains exactly ¢
points and each point necessarily lies on exactly ¢ lines.

We begin with a brief introduction of the groups we wish to study, and by collecting some
structural results that we will need for our construction.

5.1. As,-group basics. Following [9, §2] given a finite projective plane (P, L) and a bijection
A: P — L, we define a triella compatible with X to be a set T C P x P x P such that

(T1) given x,y € P, there exists z € P such that (z,y,z) € T if and only if y € A(z);
(T2) (z,y,2) € T = (y, 2,2) € T;
(T3) for any x,y € P, there is at most one z € P such that (x,y,2) € T.

Definition 5.1. Given a finite projective plane (P, L), a bijection A : P — L, and a triella T

compatible with A as above, we define the associated As-group by
(5.1) I' =T7:=(ay,z € P|azaya, =1 for each (z,y,2) € T).

Remarks 5.2. (i) The associated Ag—building is an oriented simplicial 2-complex constructed from
the Cayley graph of I'7: the vertices or 0-simplices are identified with ', the 1-simplices are
identified with pairs (w,wa,) where w € I'r and x € P. The 2-simplices are identified with
triples (w, wa,, waza,) where w € I'r, x € P and y € A(x). The free and transitive action of
['7 on 0-simplices by left multiplication extends to a free action on the building.

(ii) In [45, 24] Vdovina et al. start with similar data to produce an object they call a polyhedron
satisfying rules that have the flavour of a triella. We discovered this point of view late in our
investigation and plan to look deeper into it in future work.
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Ezample 5.3. Many examples are considered in [10]. The following illustrative example with ¢ = 2
was first described in [10, §4]:

a1 = (ao, ..., a6 : ap,ap41),0[43, = 1), where[i]; =i (mod 7).

We describe elements of ' as products of generators and their inverses. The following standard
terminology for finitely-generated groups helps us discuss such expressions.

Definition 5.4. Let I'y be an Ay-group with generators {a, : © € P}. By a word in ' we mean
a string of the form gy g, - - - g such that each g; € {a,,a;': x € P}. The word g; - - - g represents

the element w € 'y if the product Hle g; in 'y is equal to w. We typically indicate the group
law by juxtaposition, so we write w = gy - - - g» when the word g; - - - g represents w. Context will
dictate whether a string g; - - - gx is being regarded as a word or as a product.

It is helpful to express elements of I'+ in a standard form.

Proposition 5.5. Let 'y be an AQ—gmup with generators {a, : x € P}. Let w € I'yr. Then there
are unique integers m,n > 0 and unique elements Ti,...,Tm,Y1,--.,Yn € P such that

_ -1 -1
(5.2) W= Qg+ Ay, Gy -Gy, and

(a) xign € Ma;) for 1 <i<m; (b)y; & Myj+1) for 1 <j<n;and (c)x, #y if myn>1.
For the same m,n, there are also unique tq,...,t,,S1,...,8n, € P such that
(5.3) w=a;"-a; as - -as,, and

(d) siv1 € N(s;) for 1 <i<m; (V)t; &€ Ntjp1) for 1 <j<n;and ()ty# s if m,n>1.
We call the expressions above the right normal form and left normal form of w respectively. Both
have minimal length amongst words in the generators and their inverses that represent w. More-

over, every minimal-length word in the generators and their inverses that represents w contains m
generators and n generator-inverses.

Proof. See [9, Proposition 3.2] and [8, Lemma 6.2]. O

Corollary 5.6. Let T'r be an As-group with generators {a, : x € P}. For all x,y € P such that
x # vy, there exist unique s,t € P with s # t such that a;‘a, = asa; .

Proposition 5.5 allows us to define a degree functor for a 2-graph structure on I'y in terms of
the number of generators and their inverses in a minimal representative of an element.

Definition 5.7. Let I'; be an Ay-group . Define § : 'y — N2 by §(w) = (m, n) if its right normal
form is as in equation (5.2) (equivalently, its left normal form is as in equation (5.3)). We define
the length of w to be |§(w)| = m + n. We call § the shape function.

Remark 5.8. The shape function ¢ is not additive: in I'ay = (ao, . .., a : @, ajit1], i3, = 1),
d(araz) = d(az') = (0,1) # (2,0) = d(a1) + d(az).
The shape function § gives rise to a natural notion of a reduced word.

Definition 5.9. A word g; - - - gx in I'7 is said to be reduced if it has minimal length among words
that represent the same element of I';. That is, gy - - - gx is reduced if |0(gy - - - g)| = k.

Remarks 5.10. (i) The final statement of Proposition 5.5 shows that words in right normal form
or left normal form are reduced words.



EMBEDDABILITY OF HIGHER-RANK GRAPHS 21

(i) Not all words that have no “obvious cancellations” are reduced: the word w; = apas 'ag in
Ca1={ag,-..,a6: )7 Afit1]7 A[i+3]; = 1), is not reduced since

a0a4*1a6 = Qpa1a2ag — a,oa,l(loil = (1371(1,071.

(iii) Every subword of a reduced word is reduced.
(iv) If w = gy -+ - gx is reduced and for some i, g; = a, and g;41 = a;l for some x,y € P with

x # y, then by Corollary 5.6, there exist unique s, ¢ € P with s # ¢ such that a,a, ™' = a; " a.
The word obtained from w by replacing ¢;g;1+1 = aza, I with a,"'a, is also reduced.
Example 5.11. Consider I'yr := 'y = (ao, ..., a6 : ap},a[i41),0[+3, = 1) from Example 5.3. For

w = agayazt € I'r, we have §(w) = (1,2); the reduced expressions for w, and the corresponding
segment of the reversed Cayley graph of I'z (the Cayley graph of I'?), are illustrated below.
w

—-1 -1 ap as
W = QpAqy Qg /a4
® <«

_ -1 -1 ai ao
W= a5 a1ag ak« /a:z
[ [

A
w=a:'ata CM/LL
= a5 Gy a4

To obtain 2-graphs from A, groups, we relate the shape function § to the group law.

Lemma 5.12 (Unique factorisation). Let I'r be an fL—group and suppose that m,n € N? and
w € 'y satisfy §(w) = m~+n. Then there exist unique h,k € 't such that §(h) = m, 6(k) = n and
w = hk. More generally, if n; € N? satisfy 5(w) = ny + - - - + ny, then there exist unique h; € I'r
such that each §(h;) = n; and w = hy -+ - hy.

Given w, h,k € T'r such that 6(whk) = 6(w) + 6(h) + d(k), we have 6(wh) = §(w) + 6(h) and
d(hk) =0(h) + §(k).

Proof. This follows from repeated applications of Corollary 5.6. O
Notation 5.13. If §(w) = (m,n) > 1 then Lemma 5.12 yields unique a, b, ¢, d € I' such that

(5.4) w=>bd=ca, 6(a)=390b)=1 and §(d)=0(c)=dw)— 1.

We adopt the notation s(w) = a, r(w) = b, ¢(w) = ¢, d(w) = d. Note that if 6(w) = 1, then
r(w) = s(w) and b(w) = ¢(w) = 1.

We provide a criterion for determining when a concatenation of three reduced words is reduced.

Proposition 5.14. Let T'y be an Ay-group and fix wo, wy,ws € Dy, Suppose that 6(wow) =
d(wo) + 0(wy), d(wiwy) = d(wy) + 6(wa) and 6(wy) > 1. Then

5(w0w1w2) = 5(’(1]0) + 5(11}1) + 5(11}2)
Proof. We induct on |0(ws)|. Suppose that |0(ws)| = 1, so d(ws) € {(1,0), (0,1)}. If §(ws) = (1,0),
then wy = a, for some x € P, 80 wowiwy = wowsa,. By Proposition 5.5, if §(wow;) = (m,n), then
in left normal form, wowy = a;,'---a;'ay, - - - ay,, and wy = a;' - -a;lag, - - ag,. Lemma 5.12 gives
G = tm (as d(wowy) = 6(wp) + d(wy)) and = ¢ A(qe) (as 6(wyws) = 6(wy) + §(ws)). Hence

-1 -1
WoW Wa = Ay~ Qg Agy * Ay, (g
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is the left normal form of wyw;wy and so
d(wowrwy) = (m+1,n) = (m,n) + (1,0) = d(wewy) + d(wz) = d(wp) + d(wy) + d(ws).

If 6(wq) = (0, 1), arguing similarly with right normal forms gives d(wowiws) = 6 (wp)+0(wy)+0(ws).
Now suppose that the result holds for [§(ws)| = n > 1, suppose that |6(wy)| = n+1. Then there
exist unique h, k € I'z such that wy = hk, 6(wy) = §(h) + d(k) and |5(k)| = 1. Since

S(wihk) = 6(wiwa) = d(wr) + 6(wq) = 0(wr) + 6(h) + 0(k),

Lemma 5.12 gives d(wih) = 0(wy) + d(h). Since |§(h)| = n, the induction hypothesis gives
d(wo(wih)) = 6(wp) + d(wy) + 0(h) = 6(wp) + d(wih). Moreover,

S((wih)k) = d(wiws) = §(wy) + §(ws) = §(wy) + d(h) + 5(k) = §(wih) + 6(k).
Therefore, since d(wih) > 1 and |6(k)| = 1, it follows that

d(wowiws) = §(wo(wih)k) = 8(wg) + d(wih) + d(k) = d(wg) + 6(wy) + (k) + 0(k)

=0
= 0(wo) + 0(wy) + I(wa). O
The following extends the above criterion to an arbitrary concatenation of reduced words.

Corollary 5.15. Fiz wy,wy,...,w, € I'r. Suppose that é(w;w;r1) = 0(w;) + 6(wiy1) for all
0<i<nandd(w;)>1 forall0<i<mn. Then

d(wowy -+ Wyp—1wy) = d(wo) + 6(wy) + -+ + 6(wp—1) + d(wy).

Proof. We induct on n. This is trivial for n = 1. Fix n > 1, suppose the result holds for all
k < n, and fix wy, wq,. .., wn, Wyy1 € 'y with §(wwir1) = 0(w;) + d(wigq) for all i = 0,1,...,n
and 0(w;) > 1 for alli=1,...,n. Then

d(wowsy -+ wy) = d(wp) + d(wy) + -+ + d(wy,) = d(wowy -+ - wy—1) + 0(wy),
and since 0(w,wp41) = 0(wy) + (wpy1), we have
6(wowy + + + Wywny1) = 6(wowy -+~ Wy—1) + d(wy) + 8wy y1) = 6(wo) + d(wy) + -+ 5(wy) + 6 (wWnt1)
by Proposition 5.14. Thus the result holds by induction. O
5.2. The 2-graph associated to an A,-group. Given an fL—group ', we now construct a

2-graph A7 using the relation between the multiplicative structure of its reduced words and the
shape function discussed in the previous section.

Definition 5.16. Fix an A,-group I'r. We define
Ar={weTls:0(w)>1} and AY={uecTr:6(u)=1}.

We define r, s : A7 — AY as in Notation 5.13 and d : A7 — N? by d(\) = §(A) — 1. For A\, u € Ar
such that s(A) = r(u), we define A o p as follows: Write A = ¢(A)s(A) and p = r(u)b(u) as in
Notation 5.13; we define

(5.5) Ao = c(N)s(A)b(p).
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Our definition of A o x in (5.5) emphasises the overlap of A = ¢(A)s(\) and p = r(p)c(p) in the
element s(\) = r(u) of 671(1) C I'7. We can also express it to emphasise its compatibility with
the maps b and ¢: for A\, u € A as above with s(\) = r(u),

(5.6)  Aop=c(A)s(N)b(p) = r(Mb(A)b()  and Ao p = c(A)r(p)b(u) = c(N)e(p)s(p)-
Our main result in this subsection is that Definition 5.16 defines a 2-graph:

Theorem 5.17. With definitions and notation as above, (Ar,d) is a 2-graph, and the maps b, c :
A+ — 'y of Notation 5.13 are 1-cocycles.

Proof. Associativity of multiplication in I'7 ensures that A+ is a category under o. To see that
d: A — N? is a functor, fix \, u € Ay with s(\) = r(u). We have Ao u = ¢(\)s(\)b(u), where
d(s(N))) = 1. So the first part of Lemma 5.12 gives

d(c(N)s(A)) =d(A) +1 =6(c(N) +0(s(N)
0(s(AM)b(p)) = d(p) +1 = (s(A)) + 6(b(1))-
Hence by Proposition 5.14, and since §(s(A)) = 1 by definition,
A0 ) = 5(e(N)sND(1)) — 1 = 6(e(N)) +5(s(N) + 6(b(1)) — 1 = d(A) + d(p).

It remains to show that (A7, d) satisfies the factorisation property. Suppose that d(\) = (m; +
ma,ny +ng). Then §(\) = (mq +mg,ny +n2) + 1. Hence by Lemma 5.12 there exist unique g, h, k
such that A\ = ghk, 6(g) = (mq1,n1), 6(h) = 1 and (k) = (mg,ng). Thus, A = pov where p = gh,
v = hk, d(in) = (mq,n1), and d(v) = (mg,n2) and this is the unique such factorisation.

Fix A\, u € Ay with s(A\) = r(u). Equation 5.6 and the definition of ¢ give ¢(\ o pu)s(A o u) =
Ao = c(N)e(p)s(p) and r(Aop)b(Aop) = Aop = r(A)b(A)b(p). We already saw that s(Aop) = s(u)
and (Ao pu) = r(\), so cancellativity in I'; gives c¢(A)e(p) = ¢(A o p) and b(N)b(p) = b(Aop). O

Remark 5.18. Resume the notation of [38, §7]. Let M;, My be the matrices [38, p.135] obtained
from the Cayley graph %7 of I'; regarded as a building as in [9]. Then Ay is isomorphic to the
2-graph Ay, s, obtained from the M; as in [26, Examples 1.7(iv)]. Indeed, as I'z- acts transitively
on vertices of %, we can identify the alphabet A = T'/Z [38, p.135] with type-rotating isometries
i1t — Py such that i((0,0)) = er,.. By Proposition 5.5, i — i((1, 1)) is a bijection between such
isometries and 67'(1) = A%. Likewise, for wy,ws € AY, the set wiATws is in bijection with type-
rotating isometries ¢ : p., — %y such that i((0,0)) = er, t(1) = wy, and (1 + &)t(g;) ™" = wo;
that is, diagrams as in [38, Figure 9]. So the adjacency matrices of As are the M;. Since M, My
satisfy (HO)—(H3) [38, Proposition 7.9 and Theorem 7.10], M; M, is a 0, 1-matrix, so [19, Theorems
4.4 and 4.5] gives A1 = Appy v,

Corollary 5.19. With notation as above, the cocycle ¢ : A+ — U'r of Theorem 5.17 is essential
and the canonical map i : A — II(Ay) is injective.

Proof. Since A = ¢(\)s(A) for all A € A7, ¢x s is injective. Hence c is essential as in Definition 3.10,
and the result follows from Proposition 3.12. O

5.3. The covering 2-graph . In this section we construct a covering 2-graph Y7 for Ar.
We define ¥+ C I'r x I'7 as follows. Let

YSri={(z,y) €Ty xT7:1<8(x"'y)} and X% :={(z,y) €Ty xTr:1=5z""y)}
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with d(z,y) := 6(z'y) — 1 for all (x,y) € X7. By Lemma 5.12 for each (z,y) € X there exist
unique 2z, W, € I'r such that

(5.7) 5(1‘_12’93731) = 5(w;’;y) =1 and 6(z7'y) = 5(x_1z$7y) + 5(2;;y) = 5(x_1wz,y) + 5(w;’;y).
We define r(x,y) 1= (z, z,) and s(x,y) = (wa,,y). If (u,v) € Ly satisfies s(z,y) = r(u,v), we
define (z,y)(u,v) := (x,v). We show that X7 = I'r xz A (see Definition 2.4).

Proposition 5.20. With the above structure X7 is a 2-graph. Let ¢ : A+ — T'y be the cocycle of
Theorem 5.17. There is an isomorphism ¢ : X7 — Uy X, A such that ¢(z,y) = (x, 27 y) for all
(z,y) € X7. The inverse satisfies ¢~ (x, \) = (z,x\). There is a free action of T+ on X7 given by
g (x,y) := (9, 9y), and ¢ is equivariant for this action and the left action of I'y on T'r x. Ay by
translation in the first coordinate. In particular, ¢ descends to an isomorphism 5: LAY = Ay
such that ¢([z,y]) = z~1y.

Proof. We prove that 1 : I'r x. Ay — X defined by ¥(z,A) = (z,z)\) for (z,\) € T'r x. Ay
is an isomorphism, and deduce that ¢ = 1! has the desired properties. To see that v is a
functor, fix (z,A\) € I'r x. Ar. Then d(z,\) = d(A\) = d(z,z)\) = d(ip(z,\)). Recall that
c(A)s(A) = X = r(Mb(N), s(x,\) = (xe(N),s(N)) and s(z,z)) = (xc(N),zA) since w = xe(N)
satisfies 6(w™'z)) = d(s(\)) = 1 and
S(z7 ) = 0(\) = 6(c(N\) +6(s(\) = d(a w) + S(w 'z N).

Hence

P(s(, ) = Dae(N), s(V) = (@e(A), 2e(N)s(N) = (we(A), 2) = s(z, 7)) = s((z, \)).
A similar computation shows that ¥(r(z, A)) = (x,zr(X\)) = r(¢¥(z, A)).

Given composable elements (z,A), (zc(A\), ) € T'r x. Ay, the above argument shows that
(x, N),P(xe(N), p) are composable in X . We have

(2, A)(e(A), ) = (2, Ao p) = (z, 2(A o p))
= (z, xe(MN)p) = (2, 2A) (we(A), 2e(MN)p) = P(2, A (wc(A), p).-

Hence, 1 is an isomorphism and thus X is a 2-graph. That ¢ is equivariant follows from its
definition and the last assertion follows from [26, Remark 5.6]. U

Proposition 5.21. Let (z, 2), (w,y) € 5. Then (z,2)Sr(w,y) # 0 if and only if
Sz w)+1 =8 y) =0(z"1y) + 1,
and then (x, z2)X7(w,y) = {(z,y)}. In particular, X1 is singly connected and C*(31) is type Io.

Proof. It 0 € (z,2)27(w,y), then r(o) = (z,2) and s(o) = (w,y), so 0 = (z,y), w = w,, and
Z2 = 2y, by (5.7). In particular, (z, 2)X7(w, y) is either empty or equal to {(z,y)}.

If §(x~ty) > 1, then (z,y) € X7 if and only if s(x,y) = (w,y) and r(x,y) = (z,2). Moreover,
s(z,y) = (w,y) if and only if w = w,,, that is (see (5.7))

S(z7ty) = 0z w) + S(wty) = oz w) + 1
and r(x,y) = (z,2) if and only if z = z,,, that is
Sz ly) =0(xt2) +0(z 7 ty) = 0(z"ty) + 1.
The final assertion follows from the first paragraph of the proof and Proposition 4.4. 0
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Remark 5.22. That Y7 is singly connected also follows from the facts that X7 = T'r x; A (by
Proposition 5.20), ¢ is essential and I'r xz A7 is singly connected (by Corollary 5.19).
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