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ABSTRACT. We study the categorical homology of Zappa—Szép products of small categories, which

o™ include all self-similar actions. We prove that the categorical homology coincides with the homology

(Q\| of a double complex, and so can be computed via a spectral sequence involving homology groups of

8 the constituent categories. We give explicit formulae for the isomorphisms involved, and compute

the homology of a class of examples that generalise odometers. We define the C*-algebras of self-

> similar groupoid actions on k-graphs twisted by 2-cocycles arising from this homology theory, and

% prove some fundamental results about their structure.
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1. INTRODUCTION

This paper achieves three main objectives:

(1) to introduce a unifying framework, which we call matched pairs of categories, for self-similar
actions, graphs of groups, Zappa—Szép products, and k-graphs;

(2) to introduce homology and cohomology for matched pairs, and develop practical tools for
computing them; and

(3) to associate twisted C*-algebras to self-similar groupoid actions on k-graphs, and establish
fundamental structure theorems for these C*-algebras.

Self-similar groups of automorphisms of trees were introduced in the early 1980s as models
for new classes of groups. Grigorchuk used self-similar groups to describe the first example of
a finitely generated group with intermediate growth [Gri80, Gri84], and Nekrashevych recently
used them to produce the first simple groups of intermediate growth [Nek18]. Self-similar groups
have been studied intensively ever since Grigorchuk’s work, including, since the seminal work of
Nekrashevych [Nek05], via their C*-algebras. Nekrashevych studies C*-algebraic representations
not just a self-similar group, but of the entire self-similar system: a unitary representation of the
group and a Cuntz representation of the alphabet being acted upon. The resulting C*-algebra
encodes information about the self-similar system through both K-theory [Nek05] and KMS-data
[LRRW14, EP17, LRRW18]. The former suggests that homological invariants of self-similar actions
could be a profitable avenue of study.

Initially, self-similar actions were presented with an apparent asymmetry between the role of
the group and the role of the alphabet. But recent generalisations [LRRW14, EP17, LRRW18,
LY21, LawV22] make it increasingly clear that the roles of the two objects are symmetric, and
that self-similar actions are closely related to Zappa—Szép products.

Introduced by Zappa [Zap42] and Szép [Sze50], Zappa—Szép products of groups are a general-
isation of semidirect products in which each of the two constituent groups acts on the other; so
both embed as (not necessarily normal) subgroups of the product. Subsequent generalisations in-
clude Zappa—Szép-style products of increasingly general pairs of algebraic objects: [Bri05, Law08,
LRRW14, BPRRW17, BKQS18, LRRW18, LawV22, PO22, DL23|.

Here, we start with a matched pair of categories: small categories C and D with common object
set, a left action (c,d) — c¢>d of C on D and a right action (¢,d) — c¢<d of D on C satisfying
the compatibility conditions of [Zap42, Sze50]. Each such pair determines a Zappa—Szép-product
category C <1 D; this can be viewed either “externally” as the fibred product D  *, C under a
suitable multiplication, or “internally” as the universal category containing copies of C and D with
a strict factorisation system as in [RWO02] that implements > and <. All of the algebraic product
constructions mentioned above fit into this framework, as do graphs of groups [Bas93, Ser80] and
k-graphs [KP00]. Their C*-algebraic representations all boil down to representations, in the sense
of Spielberg [Spe20], of the associated Zappa—Szép-product category.
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In the study of C*-algebras associated to algebraic or combinatorial objects, there is a well-
established principle that interesting C*-algebraic properties emerge when we twist the multi-
plication by a T-valued 2-cocycle. The archetypal examples are the noncommutative tori Ay,
which are obtained by twisting the multiplication in unitary representations of Z* by T-valued
2-cocycles—which themselves are simply computed in terms of characters (1-cocycles) on the con-
stituent factors of Z in Z* [OPT80]. To generalise this to matched pairs we need both a suitable
definition of cohomology, and effective tools for computing it in terms of the cohomology of the
constituent categories.

For topological spaces X and Y, the classical Filenberg—Zilber Theorem gives an isomorphism
between the (singular) homology of the chain complex Co(X x Y') and the total homology of the
tensor product double complex Co(X) ®7 Co(Y). We take this as our inspiration for analysing
homology of Zappa—Szép products. We consider the classical categorical homology of C x D:
n-chains are Z-linear combinations of composable n-tuples, and boundary maps are alternating
sums of the maps obtained by deleting the first or last entry in a composable tuple, or composing
adjacent terms. We show that this homology can be computed in terms of a double complex, called
the matched complex: its columns are chain complexes for the homology of D with coefficients in
modules spanned by composable tuples in C; and its rows are chain complexes for the homology
of C with coefficients in modules spanned by composable tuples in D. The matched complex C, o
is not the tensor product Co(C) ®7 Co(D), but its terms are fibred products of a similar form.

The matched complex admits two natural homology theories—diagonal homology H2(C, D)
and total homology HI°*(C, D). These are isomorphic via explicit chain equivalences called the
Eilenberg—Zilber map and the Alexander-Whitney map. The total homology HI*(C, D), is de-
fined in terms of the homology of the constituent categories C and D. So to see that the categorical
homology HY(C, D) of C > D suits our purposes, we use the method of acyclic models to construct
explicit chain equivalences between the chain complex C*(C, D) defining H*(C, D) and the diag-
onal chain complex C2(C, D). Combined with the Eilenberg—Zilber map, this gives a computable
isomorphism HJI°'(C, D) = HY(C,D). Dualising yields isomorphisms H%,,(C,D; T) = H2(C,D;T)
in cohomology.

As an aside, this shows that if a category admits a strict factorisation system, then its categorical
homology can be computed in terms of that of the embedded subcategories. This yields, for
example, a potential iterative approach to computing homology for k-graphs.

We use our results to compute the homology of a class of self-similar groupoid actions on graphs
that generalise the odometer. We calculate the homology in terms of the two nonzero homology
groups of the underlying graph F, and the kernel and cokernel of an E° x E! matrix encoding the
orders of the odometers involved. En passant, we establish useful general results about homology
for matched pairs in which one factor is the path category of a directed graph, or a bundle of
monoids, with stronger results when the monoids are copies of Z. These results would be well
suited to computing the homology of Exel-Pardo systems [EP17].

The main motivation for our work on homology is to study twisted C*-algebras of matched
pairs. The point is that the natural definition of a C*-algebraic representation of a matched pair,
as made clear by Spielberg’s work [Spe20], is as a multiplicative map ¢ + t. from its Zappa-Szép
product category to a semigroup of partial isometries. Consequently, the natural definition of a
twisted representation is in terms of a categorical 2-cocycle ¢ on the Zappa—Szép product: we
twist by the formula s¢s, = ¢((,n)sc,. However, the total homology (and cohomology) is a more
computable theory, and clearly reflects the decomposition of the Zappa—Szép product category
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into its constituent components. Our main homology theorem allows us to define and analyse
the C*-algebras in the natural way via categorical 2-cocycles, but pass to total cohomology when
we wish to identify the possible twists for a given matched pair or produce nontrivial cocycles in
concrete examples.

We explore this in the context of matched pairs consisting of a groupoid G and a row-finite
k-graph A with no sources (self-similar actions of groupoids on such k-graphs). This covers a fairly
general class of examples with relatively complex cohomology, for which C*-algebraic representa-
tions in the sense of Spielberg of the associated untwisted pair are well understood. Given a cate-
gorical 2-cocycle ¢ € C2(G, A; T), we define a universal twisted Toeplitz algebra TC*(G, A; c) and
a universal Cuntz—Krieger algebra C*(G, A; ¢) in both of which all the generators are nonzero. We
show that TC*(A, ¢|,») embeds in TC*(G, A; ¢) and likewise that C*(A, ¢|,2) embeds in C*(G, A; ¢).
We also show that if G is amenable then C*(G, c[4.) embeds in TC*(G, A; ¢), and that an addition
condition developed by Yusnitha [Yus23] ensures that it also embeds in C*(G, A; ¢). We establish a
gauge-invariant uniqueness theorem for C*(G, A; ¢) and prove that cohomologous 2-cocycles yield
isomorphic twisted C*-algebras.

We then construct twisted C*-algebras TC7;(G, A) and C(G, A) associated to a total 2-cocycle
o € C2.(G,\; T). We prove that our cochain equivalence ¥*: C% (G, A; T) — C2(G, A; T) induces
isomorphisms TC3(G,A) = TC*(G, A, ¥*(p)) and C3(G,A) = C*(G, A; U*(p)).

The paper is organised as follows. In Section 2 we establish some background: on categories; on
actions of one category on another; and on directed graphs and their path categories.

In Section 3 we discuss matched pairs of small categories. We show that each matched pair
admits a Zappa—Szép product, and discuss internal and external descriptions of this object and
its relationship to strict factorisation systems. We show how the actions in a matched pair extend
to actions on the categories of composable tuples in the categories involved. We give a number
of concrete examples of matched pairs, including the key model matched pairs that serve as local
models for composable tuples in arbitrary matched pairs.

In Section 4 we introduce the three homology theories for matched pairs. We first introduce
categorical homology of a small category, described in terms of simplicial sets. We then introduce
the matched complez—a double complex associated to a matched pair—in terms of a bisimplicial
group, and show that the assignment of the matched complex to a matched pair is functorial. We
then define the diagonal complex, the total complex, and the associated homology theories of a
matched pair.

In Section 5 we prove our main homology theorem: categorical homology, total homology, and
diagonal homology coincide. In Section 5.1, we describe the three chain maps that appear in
our main theorem: the first is the Eilenberg—Zilber map for double complexes—we just give a
formula for use in computations; the other two, II: C2 — C% and ¥: C5 — CT° are specific to
our situation. In Section 5.2, we state the main theorem, Theorem 5.3, describe the Alexander—
Whitney map, which induces the inverse of the Eilenberg—Zilber map, and outline the strategy
of the proof. In Section 5.3, we show that our model matched pairs are acyclic in both diagonal
and categorical homology, and describe functors from the Zappa—Szép-product categories of model
matched pairs into C 1 D that realise all generators of each chain complex. In Section 5.4
we invoke the method of acyclic models to characterise chain equivalences between the diagonal
and categorical complexes. In Subsection 5.5 we show that the concrete chain maps described
in Section 5.1 are such chain equivalences and describe their inverses. Finally, in Section 5.6,
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we describe a spectral sequence that computes the homology of a matched pair, and a Kiinneth
theorem for matched pairs of monoids.

In Section 6, we compute the homology of a concrete class of examples: “graphs of odometers.”
We consider a finite directed graph E together with a labelling p: E* — {1,2,...} of its edges by
strictly positive integers. We build the augmented graph, F' that has a bundle {e} x Z/p(e)Z of
p(e) parallel edges for each edge e € E. We consider a matched pair (E° x Z, F’*) in which the
copies of Z behave, collectively, like odometers. In Section 6.1, we show that in a matched pair
where the second factor is the path category of a graph, only the first two rows of the second page
of the spectral sequence obtained above are nonzero. In Section 6.2, we show that for matched
pairs where the first factor is a bundle of monoids, the homology groups each decompose as the
direct sum of the corresponding homology groups (with appropriate coefficients) of the monoids.
In Section 6.3, we prove that if the first factor is a bundle of copies of Z, only the first two columns
of the spectral sequence are nonzero, and the homology of each column is computable via a chain
complex very similar to the bar resolution of Z. In Section 6.4 we restrict to graphs of odometers,
and write down an E° x E' matrix over Z whose kernel and cokernel, together with the homology
of the graph F, compute the homology of the system (Theorem 6.15 and Corollary 6.16).

In Section 7, we consider twisted C*-algebras associated to matched pairs. Section 7.1 deals with
twists by categorical cocycles, and establishes some fundamental results about the associated C*-
algebras: we prove that the generators are all nonzero and give sufficient conditions under which the
twisted C*-algebra of G embeds in each of TC*(G, A; ¢) and C*(G, A; ¢) in Proposition 7.7; we prove
our gauge-invariant uniqueness theorem, Corollary 7.10; and we show that the isomorphism classes
of TC*(G,A;¢) and C*(G, A;¢) only depend on the cohomology class of ¢. Section 7.2 describes
twists by total cocycles, and shows that these correspond to twists by categorical 2-cocycles via
the isomorphism of cohomology induced by our main theorem above (Theorem 7.15).

2. PRELIMINARIES

Throughout this article, C and D denote small categories. We identify each C with its set of
morphisms and write C® C C for the set of identity morphisms (identified with objects). We
write 7, s: C — C° for the maps assigning to ¢ € C (the identity morphisms at) its codomain and
domain. For n > 1, we write C" for the set of composable n-tuples in C and define r, s: C* — C°
by r(ci,...,cy) = r(c1) and s(cy, ..., ¢,) = s(c,). For x, y € C° we write 2C" = {(c1,...,¢n) |
r(c1) = a}, C"y = {(c1,...,¢n) | s(en) =y}, and xCy == 2C™ N C™y.

If C° = D° we define

C+D=CxD={(c,d) eCxD]|s(c)=r(d)}.

If C, C', and D have the same objects and f: C — C’ satisfies s(f(c)) = f(s(c)), then f
lp: C+*D — C' %D is the map (f * 1p)(c,d) = (f(c),d). Similarly, if »(f(c)) = r(c), then
lp*x f: D*xC — DxC'is the map(lp * f)(d, c) = (d, f(c)).

An action of a category C on the left of a set X consists of maps a: X — C° and >: {(c, z) |
s(c) = a(z)} — X such that a(x)>x and (cie0)bx = ¢ (ca>x) for all (¢1,¢2) € C? and x € X with
s(c2) = a(x). Right actions are defined similarly, and correspond to left actions of the opposite
category C?. If C° = D° we only consider left actions for which a = r: D — C%, so > is a map
>: C* D — D. Similarly, we only consider right actions of D on C for which a = s: C — D°.
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A groupoid G is a small category in which every morphism ¢ € G has an inverse ¢~ € G such
that gg~ = r(g) and g~'g = s(g). The set of identity morphisms is called the unit space of G. In
this paper, G always denotes a discrete groupoid.

A directed graph is a quadruple E = (E°, E*',r, s), consisting of countable sets E° of vertices and
E' of edges, and maps r: E' — E% and s: E' — E° called the range and source maps. For n > 1,
we denote by E" := {p = py - pun, | i € E*, s(e;) = r(ei1)}, the paths of length n in the graph E.
If p € E™ and v € E™ with s(u) = r(v), then pv == uy -+ - vy - - - v, € E™T™ is the concatenation
of p and v. The range and source maps extend to E™: r(u) = r(p1) and s(p) = s(p,). We regard
elements v of E° as paths of length 0 with r(v) = s(v) = v, and we extend concatenation by the
formula r(pu)p = p = ps(p).

The path category of a directed graph E is the collection E* = [ [)2, E™ of all finite paths in
E. The objects of E* are E°, and the range and source maps on the E" extend to domain and
codomain maps r: E* — EY and s: E* — E°. Composition is concatenation. We use |u| to denote
the length of p € E*, so |u| = n if and only if yu € E™.

3. MATCHED PAIRS, ZAPPA—SZEP PRODUCTS, AND FACTORISATION SYSTEMS

3.1. Matched pairs. In this subsection we introduce matched pairs of small categories and their
associated Zappa—Szép-product categories. We also examine how factorisation rules and strict
factorisation systems are related to these constructions.

Definition 3.1. A matched pair is a quadruple (C, D, >, <) consisting of small categories C, D with
CY = DY, a left action >: C* D — D of C on D, and a right action <: C * D — C of D on C such
that for all (cy, ca,dy,dy) € C? x D,

(MP1) s(cap>dy) =r(ca<ady),

(MPQ) Co D> (dldg) = (CQ > dl)((CQ < dl) > dg), and

(MP3) (0102) ad = (01 < (CQ > dl))(CQ < dl)

We often just say that (C, D) is a matched pair, and suppress the actions i, <.

The category MP of matched pairs has matched pairs as objects and morphisms f = (f£, ff): (C,D) —
(C',D') consisting of pairs of functors fX: C — C’ and f2: D — D’ such that for all (¢,d) € C * D,

(i) (f5(c), f(d)) € C"+ D,
(i) fL(c)> fR(d) = fR(c>d), and
(i) f5(c) af(d) = fH(cad).
Remark 3.2. We are unsure of the provenance of the term matched pair. It is used for various

related notions: matched pairs of groupoids in [AA05]; and matched pairs of Hopf algebras in
[Sin72]. For matched pairs with C° # D°, see [DL23, Definition 2.2].

Given a matched pair (C, D), we define 7: D C — C° and s: D*C — C° by r(d, ¢) = r(d) and
s(d,c) = s(c).

Definition 3.3. Let C and D be small categories with C° = D°. A factorisation rule on (C,D) is
a map x: C* D — D x C such that

(FR1) r(c>ad) = r(c) and s(cxd) = s(d) for all (¢,d) € C D, and
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(FR2) if pu¢: C* — C and pp: D? — D denote the composition maps, then the following diagrams

commute:

C2 5D 2 0D 2 Dy 2 CxD2 2P pycxD 12 D2y
luc*lp llD*MC llc*uv luv*lc

CxD > DxC CxD - D «C.

The name factorisation rule becomes clear in the context of Zappa—Szép products (Defini-
tion 3.6). Matched pairs and factorisation rules are equivalent in the following sense.

Lemma 3.4. Let C and D be small categories with the same object set. If (C,D,>,<) is a matched
pair, then the formula

cxad = (c>d,cad) (3.1)

determines a factorisation ruler<: CxD — DxC. Conversely, if <1: CxD — DxC is a factorisation
rule and pp: DxC — D and pc: D*C — C are the coordinate projections, then >: CxD — D and
<4: CxD — C given by

c>d = pplcrad) and  ¢<d = pe(crad) (3.2)
make (C,D,>,<) a matched pair.

Proof. First suppose that 0<: C x D — D x C is a factorisation rule. Define >, < by (3.2). Since
cxid € DxC, (MP1) holds. The left-hand diagram of (FR2) implies that

((cre2) > d, (cr02) <d) = (cre2) >d = (e3> (2> d), (e1 < (ca>d))(ca < d)),

so > is a left action and (MP3) holds. Symmetrically, < is a right action and (MP2) holds.

Now suppose that (C,D,>,<) is a matched pair and define >1: C * D — D % C by (3.1). Then
cx1d € Dx*C by (MP1). Since >, < are actions r(c>d) = r(c) and s(c<d) = s(d), giving (FR1).
For (FR2) we use (MP3) at the second equality to compute,

(0102) DX d= (0102 > d, Cc1Co 4 d) = (Cl > (CQ > d), (Cl < (CQ > d))(CQ < d))
= (1@ * ,uC) 0] (I>Q *10) o (10* N)(Cl, Co, d),
and symmetrically ¢ < (dydy) = (g * 1c) o (1p* <) o (1 0lp)(c1, da, da). O

We use Lemma 3.4 without comment to move between matched pairs and factorisation rules.
Importantly, (MP1)-(MP3) give the fibre product D * C the structure of a category.

Lemma 3.5. Suppose that (C,D) is a matched pair and let uc and pp denote the composition
maps on C and D respectively. Define jip: (D xC)?> — D *C by

U = (i * pic) © (1p *>1xle).
Then for (dy,c1), (da,ca) € D *C such that s(c1) = r(ds),
uw((dl,cl), (dQ,Cg)) (01 l>d2) (Cl <1d2)02). (33)

(d
Moreover, D C is a small category with (D xC)° = r(d,c) =r(d), s(d,c) = s(c), and
composition (dy,cy)(dz, c2) = ps((dy, c1), (dQ,CQ)) The maps LC C—>DxCandip: D —DxC
defined by 1c(c) = (r(c), c) and 1p(d) = (d, s(d)) are faithful functors.
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Proof. Equation (3.3) follows from (3.1). For associativity, we calculate:
o (A1, 1, ) ptoa((da, €2), (ds, ¢3)) )
= ftsa((d1, 1), (da(ca > ds), (c2 9 d3)cs) )
= (di(c1 > (da(ca > d3))), €1 < (da(ca > ds)) (c2 < ds)es)
= (di(cr > da) (1 9 dp)ea > ds), ((e1 a.dp) < (ca > ds))(c2 2 ds)cs)
= (di(cr > dp)((c1 9da)ca > d3), (1 9 da(ca v d3)) (ca 9ds)cs)
= ,um<d c1>ds), (c1 <dy)ce, ds, 03)

= fioa(tsa((dy, 1), (da, 2)), (d3, c3)).
For functoriality of (¢ we calculate
ta(te(c1), te(c2)) = (rer)(cr > s(cr)), (er <s(cr))ez) = (r(cr), cicz) = we(crca).
Functoriality of ¢p follows analogously. Faithfulness is clear. O

Definition 3.6. We call the small category D * C with the composition p., of Lemma 3.5 the
Zappa—Szép product of C and D, and denote it C > D.

We identify C and D with the subcategories (¢(C) and tp(D) of C >x D. In particular, for
(d,c) € D*C we write dc == (d,c) € C><1D. So for ¢; € C and d; € D,

dlCldQCQ = d1 (01 > dg)(Cl < dQ)CQ.

Ezample 3.7. 1f C is a small category, then (C,C°) is a matched pair with actions ¢ s(c) = r(c)
and c<s(c) =c. We have Cx1C? 2 C = (%< C.

Ezample 3.8. Suppose that G and H are groups and suppose that (G, H,>,<) is a matched pair.
Then G <1 H is the Zappa—Szép product of G and H from [Zap42, Sze50]. If < is the trivial right
action of H on G, then for h; € H and ¢; € G, we have

(h1, 91)(ha, g2) = (hi(g1 ™ h2), 9192),
so G <1 H is the semidirect product G x H.

Zappa—Szép products have the following universal property.

Proposition 3.9. Suppose that (C,D) is a matched pair, let A be a small category such that
A =C% =D° and suppose that jo: C — A and jp: D — A are functors satisfying

je(c)jp(d) = jp(cw d)je(cad) (3.4)
for all (c,d) € C*xD. Then there exists a unique functor je > jp: C <1 D — A such that
(je i jp) o te = je and (je < jp) o tp = jp. If B is a small category with B® = C° and k¢ : C — B
and kp : D — B are functors satisfying (3.4) and with the same universal property, then ke < kp
is an isomorphism C <D — B.

Proof. Define je < jp: C <t D — A by (je > jp)(d, c) = jp(d)je(c). Clearly, (jec > jp) o te = je
and (jc < jp) o tp = jp. For functoriality we compute,
(je > jp)(dicidacs) = jp(dyi)jp(ci > da)je(cr < da)je(c2)
= jp(di)je(c1)ip(da)je(ca) = (je > jp)(dict) (je > jp)(daca).
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If f: CxD — Ais a functor satisfying f o (e = je and f oip = jp, then f(dec) = f(ip(d)ic(c)) =
Jjp(d)je(c) = (je > jp)(de). If (B, ke, kp) has the same universal property, then that universal
property applied to (¢ and tp yields a functor 6 : B — C <1 D inverse to k¢ < kp. ]

Corollary 3.10. The assignment (C,D) — C < D is functorial: given a matched-pair morphism
(RE,hB): (C, D) — (C', D), there is a functor h: C>x1D — C' 1D’ such that h(dc) = hf(d)h*(c)
for all (d,c) € D xC. This functor satisfies h o tc = ter o hY and h o 1p = 1p o h'. Conversely, if
h: CraD — C' > D' is a functor such that h(C) C C' and h(D) C D', then (h|c,hlp): (C,D) —
(C',D') is a matched pair morphism.

Proof. To obtain h, apply Proposition 3.9 to tc o h* and tp o hf'. The second statement follows
from a one-line calculation. 0J

As with groups, we can take either an “external” or an “internal” view of Zappa—Szép products
of categories. Recall that a wide subcategory of a category £ is a subcategory containing £°.

Definition 3.11. A strict factorisation system for a category £ is a pair [D, C| of wide subcategories
of £ such that for every e € £ there are unique d € D and ¢ € C satisfying e = dc.

Remark 3.12. Factorisation systems are related to distributive laws on monads: strict factorisation
systems are equivalent to distributive laws in the category of spans [RW02, Theorem 3.8].

Proposition 3.13. Let (C,D) be a matched pair. Then [D,C] is a strict factorisation system
for C <1 D. Conversely, let [D,C| be a strict factorisation system for a small category €. For
(¢,d) € CxD, let c>d € D and c<d € C be the unique elements such that cd = (c>d)(c<d). Then
(C,D,>,<) is a matched pair and (d, c) — dc is an isomorphism C <1 D = £.

Proof. Suppose that (C, D) is a matched pair. Since C <1 D = D« as sets, each e € C 1 D factors
uniquely as e = dc.

Conversely, suppose that [D,C] is a unique factorisation system for £ and fix (¢, 2, dy, ds) €
C?+xD? Let d,d" d" € Dandd, ", " € C be the unique elements such that cicod; = d'c,
cody = d'c”, and 1d” = d"d”. Then d"("d") = d’d" = cicody = d'd, so uniqueness of
factorisations gives (cico)>dy =d =d"” =c;>d” =1 > (ca>dy). So > is an action of C on D.

Now let d', d’,d” € D and ¢, ", ¢"” € C be the unique elements such that cydidy = d'd,
cody = d"d”; and 'dy = d"¢”. Then d"d"d" = d'¢, so uniqueness of factorisations gives ¢, >
(d1d2> =d =d"d" = (CQ > dl)(C” > dg) = (CQ > dl)((CQ < dl) > dQ), Verifying (MPQ)

Symmetrically, < defines a right action of D on C satisfying (MP3). Condition (MP1) follows
from the composition laws in £. O

Remark 3.14. Proposition 3.13 says that the internal and external views of Zappa—Szép products
are equivalent. Given a matched pair (C,D) we can equivalently: (a) build the concrete product
C xx D; or (b) say that &€ is a Zappa—Szép product if it contains copies of D and C as wide
subcategories such that [D,C] is a strict factorisation system implementing the given actions.

For C*-algebraic representations a la Speilberg [Spe20] it is important to know when a small
category C is left cancellative in the sense that if cico = cic3, then co = ¢3. The following lemma
provides a sufficient condition under which Zappa—Szép products are left cancellative.

Lemma 3.15. If (C,D) is matched pair in which C and D are both left cancellative and for each
c € C the map cv>-: s(¢)D — r(c)D is injective, then C 1D is left cancellative.
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Proof. Suppose that dyc;,dycas € C 1D satisty dycidacey = dicidses. Then dy(cq > dy) = dy(cq > d3)
in D and (¢;<9dy)ca = (c1<4d3)es in C. Since D is left cancellative, ¢;>ds = ¢;>d3, and so injectivity
of the left action gives dy = d3. Consequently, (c; <dy)cg = (¢1 <dg)cs. Left cancellation in C
implies that ¢y = ¢3, so C < D is left cancellative. O

Example 3.16. If C is a groupoid then it acts cancellatively on both itself and D because it has
inverses. So C <1 D is left-cancellative whenever D is.

3.2. Extending matched pairs to composable tuples. We define homology for matched pairs
in terms of associated categories of composable tuple, so it is important to understand how > and
< extend to these categories.

Definition 3.17. The free category (or path category) of a small category C is the category C*
with morphisms Uy C*, identity morphisms C°, and composition (for non-identity morphisms)
given by concatenation.

Remark 3.18. There is a subtlety here. The set C! of 1-tuples in C* contains the 1-tuples {(v) |
v € C°}, but this disjoint from C° C C*. This is reflected in the composition law: for v € C°
and (c1,...,¢;) € C* with 7(c;) = v, we have v(cy,...,cx) = (ci1,...,cp) while (v)(cy,...,c0) =
(v,€15 .0y Cr)-

Lemma 3.19. Let (C,D) be a matched pair. Define <y,: C x D™ — D" x C inductively by p<y: =,
and

D= (Lpn-1% D<) 0 (1¢* >, 1)
forn > 2. Definev<,: C*D* = D*xC by X|oupn = >, . Then
(i) for eachm >1 and 1 <p<n,

Nn = (1Dn—p * [><]p) @) (anp *1'1)19)7 (35)

(ii) >, s a factorisation rule, and

(iii) if up: D* — D is the map pp(dy,ds,...,d,) = dids - - - dy, then (1¢, pup): (C,D*) — (C,D)
is a matched-pair morphism.

Proof. (i) When n = 1, we have p = 1, so (3.5) is vacuous. For n > 2, equation (3.5) holds for
p = 1 by definition of >,. Fix ng > 2 and 1 < py < ng, and suppose inductively, that (3.5) holds
for all n < ng and 1 < p < py. In the diagram

>ng—pg *1pPo 1D"O*PO *>pg

C x Pro Dro—Po 4 C x PDPo Do C

1

*D<] %1

DO —PO pro—1

>ng—pg+1 *1pp—1 Lpng—po+1¥>pg—1

D”O—P0+1 * C * DPO—l

the left-hand triangle commutes by the inductive definition of ><,,,_,,, and the right-hand triangle
commutes by induction since py < ng. Since pg — 1 < pg, the composition of the maps along the
bottom of the triangle is 0, by induction. So (3.5) holds for all n and p.
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(ii) A routine induction verifies (FR1). To see that the first diagram of (FR2) for <, commutes,
consider the following diagram.

62 " Dn+1 le#ddn 1 C % Dn_H «C Mn41%*le Dn+1 « C2
loxDp*x1p 1pn*>
1(,’*1)"1 *D>] Mn*lp*c
CxD"xCxD DrxCxDx*C
pe*lpnt1 Lpn+1*uc
Dn*1lesp 1pn e
D"« C?+D
llpn*‘uc*lp
Dy, * 1 1pn x>
C % Dnt! nP D"« CxD L Dl C

The central diamond clearly commutes, the top-left and top-right triangles commute by the defi-
nition of 4,1, and the bottom-right pentagon commutes by (FR2) for b<. The composition of the
maps along the bottom row of the diagram is 0,1 by definition. So the whole diagram commutes
if and only if the bottom-left pentagon commutes. An induction now shows that the first diagram
of (FR2) commutes for .

For m,n # 0, the multiplication map pp«: D™ x D" — D™ is the obvious bijection. So the
second diagram of (FR2) commutes by (i). Hence, i, is a factorisation rule.

(iii) By Lemma 3.4 and Corollary 3.10, it suffices to show that (up * 1¢)o ><,: C* D" — D % C
and < o(1¢ * up): Cx D™ — D C are equal for all n. For n = 1 this is trivial, so suppose equality
holds for n — 1, and consider the following diagram.

CxD" Pn 1 1D D% CxD Ipn—1% D"« C
IC*HKD*ID\L #D*IC*D\L luD*lD*c
C*D2 > *1p DxC+D 1p* D2*C
lc*upi Juo*lc
CxD a DxC

The bottom pentagon commutes by (FR2) for >a. The top-right square clearly commutes. The
top left square commutes by the inductive hypothesis, and so the whole diagram commutes. The
composition along the top row is equal to <,,, and the composition along the left and right columns
are le * up and pp * le. So (up * 1¢)o b, =><1 o(1¢ * pup). O

Lemmas 3.19 and 3.4 imply that (C, D*) is a matched pair. The left action of C on D¥ is given
explicitly by
cP (dh A ,dk) = <C|>d1, <C<ld1) > (dQ, .. ,dk))
= (Cl > dl, (01 < dl) > dQ, (Cl < (dldg)) > dg, e (Cl < (d1 .- 'dk—l)) > dk)
and the right action of D* on C is given by c<(dy,...,dy) = c<(d; - -dy).
We can also define ,>< : C" «* D — D % C™ inductively by 1> :=p<, and
(C1y.eyCn) > d = (0 %len-1)((Cay ... Cn) o1 d),

and then ,>q : C** D — D % C* by . |pn,p = »>< . Lemma 3.19 applied to opposite categories
implies that ,>1 is a factorisation rule with properties analogous to those of <. The left action
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of C¥ on D is given by (c1,...,c;)>d = (c;-+-c;) > d and the right action of D on C* is given by
(1, yer)ad = ((e1,. .. k1) < (x> d), e < d)
=(c1<((ea---cp)>d), ..., o< ((cporck) > d), cp_1 < (x> d), cp <d).
Since (C*,D) is itself a matched pair, (C*,D*) can also be equipped with the structure of a
matched pair via Lemma 3.19.
Proposition 3.20. Let (C,D) be a matched pair. For m,n > 1 define by, ,: C™ % D" — D" % C™
inductively by <y ,:= p<,: C* D" = D" % C and
Dy = (D, kLom—1) 0 (Lo Dp_q ).

Define <, .: C* * D* — D* % C* by X i |omypn = DUnp. Then

(i) D4 is a factorisation rule, and

(i) (pe, pp): (C*,D*) — (C,D) is a matched-pair morphism.
Proof. That (C,D*) is a matched pair, together with an additional application of Lemma 3.19,
gives (i). Two applications of Lemma 3.19(iii) give (ii). O

We often write pa: C* « D* — D* x C* for the map <., of Proposition 3.20, which implies
that C* b D* is a category with strict factorisation system [D*,C*]. We identify C* < D* as
a set with D* « C*. For each composable k-tuple v € C* b1 D* there exist p;,q; > 0 such that
v € DPL x CT % - -+ % DPk x C; its product belongs to D1+ +Pk x Cat+ak,

The map <y, ,, can be computed in any order in the following sense.

Corollary 3.21. Let (C,D) be a matched pair. For each 1 < p <m and 1 < g <mn, the diagram

>Xm,n

C™ x D" D"« C™
Lem—p*>p,q *1anql Tlvq*mmfpqu *lep (36>

C™P % DI 5 CP 5 D1 — PTG Dy Cmep g DNy CP

commautes.

Proof. Elements of C™ « D™ = C™ P x CP x D7« D" % may considered as composable 4-tuples in
C* > D*. Since the 3-map composition around the bottom of (3.6) is an iterated product in
C* a1 D*, uniqueness of factorisation implies that the diagram commutes. O

Corollary 3.21 gives <, ,= (lpn-1% >y 1) 0 (>, -1 *1p). So we could also have applied
Lemma 3.19 to (C, D*) to obtain the matched-pair structure on (C*, D*) of Proposition 3.20.

3.3. Model matched pairs. We introduce a class of model categories that will play a central
role in our computation of homology (Theorem 5.3) below.

Let X, ={(p,q) e NxN|0<p+q<n}. We denote elements of X,, using bold font. Given
a € X, we write a = (ar,ag) to indicate the left and right coordinates of a.

Definition 3.22. Let I',, = {(a,b) € X, x X, | ar, < by and ar > bg}. Define r,s: I';, = X, by
r(a,b) = a and s(a,b) = b. Identify X,, with {(a,a) | a € X,,}.

With composition defined by (a, b)(b, c) := (a, c), the set [';, is a small category. It can also be
realised as the Zappa—Szép product of the path categories of two graphs. Let FE,, be the directed
graph with E? = X, and E} = {e, ,: (p,q) € X,, and p+q < n}, with (e, ;) = (p, ¢) and s(e, ) =
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(p+1,q). Let F, be the directed graph with F? = X,, and F} = {f,,: (p,q) € X,, and p+¢q < n},
with s(f,,) = (p,q) and r(f,,) = (p,¢+ 1). We draw E,, and F,, using coloured arrows (blue and

solid for E, red and dashed for F).

(0,3) o (0.3) ¢
f(]72 :
€0,2 :
o ¢t————o [ ] [
i i
foar  fiaa
€o0,1 e1,1 ! '
* ¢—eo<4¢——o L[] [ ] [ ]
A A A
foor  fior faol
eo. e1, e 1 1 1
(0,0) se—"—ee—"—ee—" s (3,0) (0,0) ¢ ‘ ‘ . (3,0)
E3 F3

Let F,, .= F} and &, := E denote the path categories of F,, and E,,, respectively.

Lemma 3.23. The subcategory {((p,q), (P',q)) | p <p' < n, g <n} of T, is isomorphic to &, and
the subcategory {((p,q), (p,q)) | p < n,n > q > ¢'} is isomorphic to F,,. Moreover, [F,,E,] is a

strict factorisation system for T'y,; the pair (E,, F,) is a matched pair, with
€pg® for1g-1 = Jpg-1  and epq < fpi19-1 = €pg-1;
and '), &2 &, 1 F,,.

Proof. Since &, is freely generated by E,, the map e,, — ((p,q),(p + 1,q)) identifies &, with
{((p.90), (¥, q)) [ p < p'}. Similarly, F,, = {((p,q), (»,¢)) | ¢ > ¢'} via fpq = ((p,g+ 1), (2, q))-
Both &, and F,, are clearly wide subcategories. For each (a,b) € I',,, a = ((ar, ar), (ar,br)) and
B = ((ar,br), (br,br)) are the unique elements of F,, and &,, respectively such that (a,b) = af.
So [Fn, E,] is a strict factorisation system for T',,.
The remaining statements follow from Proposition 3.13. U

Definition 3.24. We refer to the matched pairs (&, F,,) as model matched pairs.

Each T',, can be visualised as a commuting diagram incorporating both F, and Fj,.

(0,3) 1
fo2 !
, €02
©2) 1 1
fo,i for fi
0.1 : €0,1 : €0,1 : €1,1 (37)
O 1 A S
fo01 foor  fion foor  fior faon
| €00 | €00 | €10 | €00 | €10 | €20
(0, 0) ° (070) s—e (170) (0, 0) ¢ B — (270) (070) < < < (37 0)
Ly Iy [y I'3

For each n, we draw E,, and F,, on the same vertex set. Each picture in (3.7) is a commuting
diagram in the corresponding I',,. A morphism (a,b) € T, is equal to the composition of any of
the paths in (3.7) from the vertex at b to the one at a.

The matched pairs (&£,, F,,) are—in the following sense—free in the category MP.
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Lemma 3.25. Let (C, D) be a matched pair. For everyy = (doco, ..., dn_1¢n_1) € (C <1 D)™, there
is a unique matched pair morphism h.: (&€,, F,) — (C, D) such that for all 0 < k < n,

h§(€k7n,1,k) = C and h,?(fkm,l,k) = dk (38)
Moreover, every matched pair morphism (&,, F,) — (C, D) is of this form.

Proof. For each 0 < k < n let di,—1-r = dy and cgp_1- = C, and for each 0 < p+qg<n—1
define d, , € D and ¢, , € C inductively by d, , := ¢p 441> dpt1,4 and ¢, 4 == ¢p g1 Adpt1,4. Since &,
is freely generated by edges, there is a unique functor hl: &, — C satisfying hl (e, q) = ¢4 for all
0 < p+ ¢ < n. Similarly there is a unique functor hf: Fn — D satistying hf(fm) = dp 4. Since
pgCp.g = Cpgr1dpr1,g, it follows that h, = (hL, hl') is a morphism of matched pairs.

For uniqueness, fix a matched pair morphism h: (&,, F,) — (C, D). Then h%(e,,) = h*(ep 441 <
for1.q) = hl(epgi1) < h(fri1,4) and similarly RE(f, ) = hl(epq11) > W (fpi1,4). Since hf: &, —
C and hf': F, — D are functors, h” and hf are determined by the values hL(e;m_l_k) and
R (frn—1-) for 0 < k < n. So h, is uniquely determined by (3.8).

Corollary 3.10 says that h, is the unique functor I';, — C 1 D such that hy(fin—1-k€rn—1-k) =
dic, Tor all 0 < k < n.

3.4. Further examples.

3.4.1. k-graphs. Here we describe k-graphs [KP0O] using matched pairs. The generalisations of
higher-rank graphs of [LawV22] also fit into our framework, but we do not discuss them here.

Definition 3.26. A k-graph is a countable category A together with a functor d: A — N*_ called
the degree map, which satisfies the following factorisation property: if d(\) = m + n, then there

exist unique elements p,v € A such that A\ = pv, d(u) = m and d(v) = n. For each n € N*, we
define A" = d~*(n).

We show that every (ky + ks)-graph is a Zappa—Szép product of a k;i-graph and a ko-graph.

Lemma 3.27. Fiz ki, ko € N and let 3 be a (ki + ko)-graph. Let A .= d=1(N* x {0}) regarded as
a ky-graph, and let T := d=1({0} x N*¥?) regarded as a ky-graph. There are unique actions > of A
on ' and < of T' on A such that Ay = (A>y)(A<7) in 3 for all composable pairs (A,y) € AT
These make (A,T',>,<) a matched pair, and (v, \) = Y\ is an isomorphism A< ' — X. We have
d(A>7) =d(v) and d(A <) = d(N) for all \,~.

Proof. Everything except the final statement follows the factorisation property and Proposi-
tion 3.13. The final statement follows from the factorisation property. OJ

We now describe a converse to Lemma 3.27. An edge in a k-graph is a path e such that d(e) is
a standard generator of N¥. We write E(A) for the set of edges of A. Let ¥, A,T',> and < be as in
Lemma 3.27, and write dy: A — N¥t and dp: I' — N*2 for the degree functors. Then

(K1) s(v>p) =r(vap) for all (v,n) € E(A) x E(I);

(K2) ig<ap = (1 < (va> p))(va < p) for all (v1, 10, 1) € E(A) x E(A) x E(I),
(K3) v pype = (v py)((v < pn) > pe) for all (v, uy, po) € E(A) x E(I') x E(T),
(K4) dr(ve p) =dr(p) and dy(v<p) = da(v) for all (v, u) € E(A) x E(T"), and
(K5)

Kb5) for each (u,v) € E(I') * E(A) there exists a unique p/ € E(I') and v/ € E(A) such that
pw=v'vepu and v=10"qau.
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Lemma 3.28. Let A be a ki-graph and let T be a ko-graph such that A° = T'°. Suppose that
p:Ax[ = T and <: Ax ' — T are actions satisfying (K1)-(K5). Then (A,T) is a matched
pair, and the map d: A x T' — NEtER2 given by d(vy,\) = (da(N),dr(7y)) makes A > T into a
(k1 + ka)-graph.

Proof. Let E be directed graph with edges E* = E(A) U E(T), vertices E° = A° = T and range
and source maps inherited from A and T'. Define ¢: E* — {1,... k; + ko} by c(a) =i if @ € A%
and c(a) = ky + j if a € %, which we regard as a colouring of E! by k; + ky colours. Define a
collection of squares in the sense of [HRSW13, LarV22| by af ~ f'a’ if

e aff = 5’/ in one of A or T, or

eacEA)and fe E(I')and arf=p0"and a<f =d/, or

eac Bl and f€ E(A) and o> ' = and o/ <5/ =«
The factorisation properties and (K5) ensure that this is a complete collection of squares.

We claim that this is an associative collection of squares. For this we must check that if v, 8,y €

E' are composable and of distinct colours, and if

apf ~ pra, Qry ~ 710, and Byt ~ Y22 and
By ~ '8, ay!t ~a%al, and a'pl ~ g2a?;
then o? = ay, 8% = B, and 72 = 7.
If a, 5,7 all belong to either A or I', this follows from associativity of composition, so we just

need to consider when this is not the case. We treat the case where o € A and 3,7 € I'; the
calculations for the other cases are similarly straightforward. We have

Br=a>f, ap=adf, m=a>y, aq=a<dy, and [y =binl.

That is, 7202 = (a> B)((a<f)>y) = ar> (f7), and ay = (o< f) <y = a<(f7y). Similarly,

By=9'8", Y=ary, a'=aqay’, F=a'>pl and o’ =a'<pl

That is, v24° = ar (7' 8') = ar(87), and a? = (a<ay')af = aa(y'") = aa(B7). So7*f* = 125,
forcing 72 = 75 and 3% = B, by uniqueness of factorisations in I', and a? = ax.

By [HRSW13, Theorem 4.4] there is a unique (k; +ko)-graph ¥ with skeleton E and the specified
factorisation rules. Lemma 3.27, yields a kj-graph A’ and a ko-graph I such that ¥ = A’ > I,
By construction, A’ has the same skeleton and factorisation rules as A so they are isomorphic by
[HRSW13, Theorem 4.5] (see also [LarV22]), and likewise I'" = I'. These isomorphisms intertwine
the actions of A’ and I” on one another with those of A and T'. 0J

Taken together, Lemmas 3.27 and 3.28 prove the following.

Proposition 3.29. Let ' be a ki-graph and let A be a ko-graph with actions>: A« T — T' and
A AxT" — T satisfying (K1)-(K5). The Zappa—Szép product A < T is a (k1 + ko)-graph. Moreover,
every (ki+ko)-graph 11 is isomorphic to the Zappa—Szép product of the ky-graph A = d=*(N*+1x{0})
and the ky-graph T' = d=1({0} x N*2) with actions satisfying (K1)-(K5).

3.4.2. Self-similar actions. We discuss self-similar actions of groupoids on k-graphs as in [ABRW19].
These include self-similar actions of groupoids and of groups on graphs as in [Nek05, EP17,
LRRW14, LRRW18]. We show that each such self-similar action determines a matched pair in
which the left action respects the degree map. Later we will study C*-algebras associated to
such matched pairs; the framework of matched pairs allows us to dispense with the faithfulness
condition traditionally imposed in the study of self-similar actions.
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Recall that an edge in a k-graph is a path f with d(f) = e; for some i < k.

Definition 3.30 ([LRRW18, Definition 3.3]). Let A be a k-graph and let G be a groupoid with
GY = A°. A faithful self-similar action of G on A is a left action -: G * A — A of G on A such that

(SSA1) for each n € NF and g € G, we have g - (s(g)A") = r(g)A", and
(SSA2) s(g1) = s(g2) and g1 -t = ga - pu for all pu € s(g1)A, then g, = go.

(SSA3) for every g € G and every edge e € s(g)A there exists h € s(e)G such that g - (en) =
(g-e)(h-pu) for all € s(e)A.

Remark 3.31. If G acts self-similarly on A then (SSA2) implies that there is a unique h satisfying
(SSA3). We denote this element by g|, and call it the restriction of g to p.

As discussed immediately after Definition 3.3 in [ABRW19], the map g — ¢|, extends to a map

(9, 1) = g|, from G x A to A by the recursive formula g| , = (g‘e)‘(gle)w'

Proposition 3.32. Let A be a k-graph and G a groupoid with G° = A°. Suppose that -: G* A — A
is a faithful self-similar action. Define>: GxA — A by gbpu = g-p and<: GxA — G by gau = g|u.
Then (G, A,>,<) is a matched pair such that

(i) if g1 = go> p for all p € s(g1)A, then g1 = go, and

(ii) d(g>p) = d(p) for all (g, ) € G * A.

Conversely, if (G, \,>,<) is a matched pair satisfying (i) and (i), then > defines a faithful self-
similar action of G on A with restriction map g|u =g<dpu.

Proof. First suppose that -: G« A — A is a faithful self-similar action. That d(g>pu) = d(u) for all
(g9,p) € G« A follows from (SSA1), and [ABRW19, Lemma 3.4] implies that (G, A) is a matched
pair. Condition (i) follows from (SSA2).

Conversely, suppose that (G, A) is a matched pair satisfying (i) and (ii). Then for each g € G and
each edge e € s(g)A, the element h = g > p satisfies (SSA3). The condition (MP2) gives (SSA3).
That d(g>p) = d(p) for all (g, ) € GxA implies that g>- restricts to a map g>-: s(g)A"™ — r(g)A™.
Invertibility of g implies that these maps are bijective, giving (SSA1). Condition (i) implies
(SSA2). O

Motivated by Proposition 3.32 we introduce a generalisation of the faithful self-similar actions

of [ABRW19] (this is related to the definition in [LY21]).

Definition 3.33. A self-similar action of a groupoid on a k-graph is a matched pair (G,A) in
which G is a groupoid, A is a k-graph, and d(g> p) = d(p) for all (g, u) € G * A.

Ezample 3.34. Let E = (E°, E', r, s) be a directed graph as in Section 2. Then E* is a 1-graph with
degree map given by the length functor. Moreover, every 1-graph is of this form. The definition
of a faithful self-similar action of G on E* as above reduces to the definition of a self-similar
action of a groupoid on a graph in [LRRW18]. This in turn generalises the self-similar groups of
automorphisms of trees discussed in, for example, [Nek05] (these correspond to the case where E
has just one vertex). The definitions in [EP17] and [Yus23], which do not impose a faithfulness
condition, are also instances Definition 3.33 with &£ = 1.

3.4.3. Graphs of groups and group actions on trees. An undirected graph T = (IT°, Tt r,s,7) is a
directed graph endowed with a map =: I'! — I'! such that € = e # € and r(€) = s(e) for all e.
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Definition 3.35. A graph of groups is a pair (I', G) consisting of: an undirected graph I'; assign-
ments v — G, and e — G, of a group to each v € I'’ and e € T'!, such that G, = G for all e € T';
and injective homomorphisms o, : G, — G, for each e € I

The Bass—Serre Theorem [Bas93, Ser80] describes a duality between graphs of groups and edge-
reversal-free actions of groups on trees.

Building on the observations of [MR21, Theorem 5.4], we show that every graph of groups (T, G)
gives rise to a matched pair. For each e € T'!, let ¥, be a complete set of coset representatives
for Gy(e)/ae(G.). We assume that lg,., € ¥e so g, is the representative of the coset ae(G.).
There is a natural action of Gy on X.: we define g- u to be the coset representative of gu for all
g € Gpeand p € X,

Consider the groupoid G = | |,cr1 G, a bundle of groups over I''. Define a directed graph E by
EY =T1,

E'={euf |p€Se,ef €T e=f = u# g, .}
r(enf) =e, and s(euf) = f. We identify each E™ with

{egpure1fio€s - - fnen | fti € Seyy €00 €T i1 =8 = u; # Li(en) }-

Consider the path category E* of E. We show that (G, E*) can be made into matched pair (indeed,
a self-similar groupoid action as in Example 3.34).

Fix ef € I?, g € G.and u € Xy. Then g » p = az(g) - € ¥y and g € p = a;l((g >
w) taz(g)pn) € Gy are the unique elements such that az(g)u = (g » p)ays(g < p).

As in the proof of Proposition 3.13, for ¢1,92 € G., we have (g192) » i = g1 - (g2 » 1) and
(9192) €= (g1 4 (g2 » 1))(g> 4 p). We define a left action >: G % E* — E* inductively by

g eofire1paes - - finey = (€o(g ® p1)e1)((g € 1) > erpaes - - finey),
and a right action <: G x E* — G inductively by

g <epphrerfioes - - fney = (g A f11) Ae1figes - - - fhnen.

It is straightforward to verify that these actions turn (G, E*) into a matched pair. Moreover, >, <
satisfy (SSA1)—(SSA3) so G acts self-similarly on E*.

4. THREE HOMOLOGY THEORIES FOR MATCHED PAIRS

We describe three homology theories associated to a matched pair (the last two via a double
complex). We show in Section 5 that they all coincide up to natural isomorphism.

4.1. The categorical complex and categorical homology.

Definition 4.1. Let C be a small category. For each k > 0 let Cy(C) := ZC* be the free abelian
group generated by composable k-tuples. We write [co, ..., cx] € Ciy1(C) for the generator corre-
sponding to (cg, ..., cx) € C¥TL. For k > 1 define dy: Cry1(C) — Ci(C) by

k

delco, .- cl = le1, - ] + < (—1)i[co, e, Cil1Ciy e ck]) + (—1)k+1[co, ey Cl]

1

=

and define dy: C1(C) — Co(C) by dplc] = [s(c)] — [r(c)]. Then (Ce(C),d,) is a chain complex, and
its homology, H,.(C), is called the categorical homology of C.
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For an abelian group A, let C*(C; A) := Hom(C(C), A). Define d*: C*(C; A) — C**1(C; A) by
d*(f) = fody. Then (C*(C; A),d®) is a cochain complex, and its cohomology, H*(C; A), is called
the categorical cohomology of C with coefficients in A.

There are more-sophisticated definitions of categorical cohomology in terms of projective reso-
lutions of C-modules (cf. [GK18]). Our definition amounts to fixing a resolution, analogous to the
bar resolution for group homology (cf. [Wei94, §6.5]), of a constant functor C — A (see [GKI1S,
Proposition 2.4])

Definition 4.2. The categorical homology, denoted H.(C, D), of a matched pair (C,D) is the
categorical homology of the Zappa—Szép product category C < D. For each k£ > 0, H*: MP — Ab
is functor defined by the composition (C,D) — C <1 D — Hy(C > D).

For an abelian group A, the categorical cohomology of (C,D) with coefficients in A, denoted
HZ2(C,D; A), is the categorical cohomology of C <t D with coefficients in A.

We work with simplicial groups rather than chain complexes (see [Wei94, Ch.8]) to simplify
calculations. The Dold-Kan Theorem [Wei94, Theorem 8.4.1] gives an equivalence of categories
between simplicial abelian groups and chain complexes of abelian groups.

For each k > 1 and 0 <i < k + 1 we define the face map 9%: Cri1(C) — Ci(C) by

le1, ... ekl ifi=0
8,1[00,...,01-,...,%]: [CO,...,Ci,lcl"...,Ck] lflﬁlﬁk (4].)
[CQ,...,Ck_l] lf’L:kJ+1

We also define 9)[c] = [s(c)] and 8}[c] = [r(c)]. In particular, dj, = S5} (—1)F0L.

To work with degeneracy maps, we use the following—slightly non-standard—notation.
Notation 4.3. If (cy,...,c;) € C* is a composable k-tuple, and 0 < i < k, then we define
(C1yee s Cicty 5 Cintye ey Cr) = (C1y ooy Cio1,8(Cim1), Cig1y e - Ck)

= (c1y. . Cie1,7(Cix1), Cints ... ) € CFTL

The identity morphism represented by any given instance of _ is determined by either of the
neighbouring entries.

For each k > 1 and 0 < i < k we define the degeneracy map o}.: Cy(C) — Cy11(C) by

[fu 007---7614:71] ifi= 07
O'Ii[Co,...,Ck,I] = [CQ,...,Ci_l,i,Ci,...,Ck_l] 1f0<’L<k5,
[coy oy Ch1, ] if i =k,

with of[z] = [z] for z € C°. These and the 9} satisfy the simplicial identities:
gi_,0] = 8] 10, ifi<j
a};Hcri = aiﬂa}; if 1 <7, and
- ol ol ifi<j
0% = S ide, ) fi=jori=j+1
alit ifi> 41,
so (Ce(C),0,0) is a simplicial abelian group.
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If (C,D) is a matched pair, then Proposition 3.20 gives an action of C on each D*l. For
(c,d) € C x DF1 we write ci> [d] for the generator [c>d] of Cyy1(D). Similarly if (¢, d) € CK*1 D
we write [¢] <d for the generator [c<d)].

Lemma 4.4. Let (C,D) be a matched pair and take k € N. For 0 < i < k+ 1 and for (c,d) €
C * DM we have di(c>[d]) = cv dild] in Cp(D). Similarly, for 0 < j < k+1 € N and

(c,d) € C**1 x D, we have d([c] ad) = &[] «d in Ci(C).
Proof. We prove the first statement; the second follows symmetrically. Since ¢ > 0, we have
coOld] = c>[do, ..., didisq, ..., dy
= levdy, (cado) o dy,... (cady...diy) > didisr, .. (c<(do. .. di 1)) dy]
= [cvdo, (cado)wdy,..., ((cado...diy) > d;)((cado...di) v diys),
o (ea(dy . dyy)) v dy]
=0, [crdo, (cady)pdy,.... ((cady. . diy)dy), ((cady...di) v diy),
(e (dy. . dgy)) > di]
= Oy (c> [d)). O

Remark 4.5. Lemma 4.4 is only valid for i > 0 and j < k + 1. The left action of C on D**! does

not commute with 99, and the right action of D on C**!' does not commute with 9y ™.

4.2. The matched complex. We associate a double complex to each matched pair (C,D). For
p, ¢ > 0, regard elements of C? x D? as composable tuples in (C < D)P+?, whose first p terms belong
to C C C 1D and whose remaining ¢ terms belong to D C C < D.

Let C,4(C, D) == Z(C? « DY), the free abelian group generated by C? * D?. Let > be the action
of C on D9 of Lemma 3.19. Define horizontal face maps Ot Cpi1,4(C, D) — Cp4(C, D) as follows.
Forqg > 1,

[Cl,...,Cp,dQ,...,dq_l] if1=20
8;;7’;[007...,Cp,do,...,dqfl] = [CQ,...,Ci_lci,...,Cp,do,...,dq_l] if 1 Slgp
[Co,...7cp,1,cpl>(do,...,dqfl)] le:p—Fl,

while 8;’8 =0, Cp11(C) = C,(C) as in (4.1). For 0 < i < p we define the horizontal degeneracy
maps aﬁ’é: Cpq(C,D) = Cpi1,4(C,D) by

hi —
Up7q[00, <oy Cp—1, do, c. ,dq_l] = [CQ, ey Ciy 5G4y -0, Cp—1, do, ey dq—l]-

For each ¢ > 0, the tuple (C, ,(C, D), , ol ) is a simplicial abelian group.

.7q7 ®.q .
Let < be the action of D on C* of Lemma 3.19. Define wvertical face maps 9,7, : Cpq+1(C, D) —
C,.4(C, D) as follows. For p > 0,

' [(C(),...,Cp,1)<]d0,d1,...,dq] lfj:(]
8;:5[00,...,Cpfl,do,...,dq] = (_1)p [Co,...,Cp_l,do,...,dj_ldj,...,dq] if 1 S] S q
[Co,...,Cp_l,do,...,dq_l] lfj:q+]_,
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while 9§} = d: Cqp1(D) — Cy(D) as in (4.1). For 0 < j < q we define vertical degeneracy maps
oul: Cpg = Cpgr1 by

U;:é [CQ, ey Cp1, do, R dq—l] = (—1)p[00, sy Cpt, do, . ,dj,i, dj+1, dq—l]-
Then (C,(C, D), 0, ,,0,,) is also a simplicial abelian group.

For the next result, recall from [Wei94, §8.5] that a bisimplicial abelian group is a quintuple
(Cee, 0", 0%, 0" 07) consisting of abelian groups C,, and homomorphisms 8’”‘ Cpi14 = Coq
oli: Cpq = Cpgaq, 0070 Cpg1 — Cpg, and 0272 G g — Gy g4 such that each (Cp., ., 05,) and

P
each (C, 4, 0% e q) is a simplicial group, and
v,i ah,J J o h,j
aOpg1 = ahq i1 and oy qagtg - pq+1J
Proposition 4.6. The quintuple (Cyo, 0", 0%, 0", 0°) is a bisimplicial group. Define
N p+1 . q+1 o
dy, = Z(—l)zﬁpgz Cpr1g— Cpyq and d, = Z(—l)lﬁg,’;: Cpgt1 — Cpq
i=0 i=0
Then
002 <; 012 <; 022 <
0 2 1 ,2
fsa o | (42)
001 <; Cll <; 021 <
0 1 1 1
R L T
CY00 <dT ClO Z 020 <
is a first-quadrant double chain complex satisfying d"d® = —d°d".

Proof. Fix p,g > 0 and fix i < p+1 and j < ¢+ 1. We must show that 8“81’}’g+1 = - ;,’qu

Fix [co,...,¢p;doy ..., dy] € Cpp1g41. If i # p+ 1 or j # 0, then 8;’; and 9™ /a1 concatenate or

delete nonadjacent coordinates, as do 97 and d,}, ,, and so the factors of (—1)? and (—1)”*! in

Iy ' and 07 jl 4 give the desired anticommutation relation. If i = p+ 1 and j = 0, then
o 062’5:11([00, s pido, o dg]) = 000 ([(co, - ¢p) oy, dy))
= 0”0([(00, ey Cpe1) A (ep>dy), cp<doydy, ..o, dy)])
= (—1) [(CQ, R Cp—l) < (Cp > do)7 (Cp < do) > (dl, R dq)],

and
8’”’“8 i1q(lcos - epido, .. dg]) = (—1)p+18;;;§([c0, cey G136 (do, .y dy)])
= (—1)”“8;’:8([00, ey Cpe1; Cp > do, (¢ 2 do) > (dyy . .., dy)])
= (=1 (co, ..., cp1) < (cy>do); (cp<adp) > (di, - .., dy)],
which gives the desired relation. It follows that dvd" = —d"d".
The anticommutation relation oy, qo]’;’g = ah’J 4+10 0% i also follows from direct computation.

Routine calculation shows that (4.2) is a ﬁrst—quadrant double chain complex. 0
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Definition 4.7. We call the double chain complex (C, o(C, D), d", d”) the matched complez of the
matched pair (C, D).

Lemma 4.8. The assignment Coo of a matched complex to each matched pair is a functor from
the category MP of matched pairs to the category of double complexes of Abelian groups.

Proof. Matched-pair morphisms intertwine the face and degeneracy maps 8;;2 and a;:fl. U

Notation 4.9. For the remainder of the paper we freq_uently omit the subscripts on face maps,
degeneracy maps and boundary maps. For example, 9™ denotes any of the maps 8]’;7’;; the values
of p and ¢ should be clear from context.

There are two chain complexes associated to each double complex: the diagonal complexr and
the total complex [Wei%4, §8.5].

4.3. The diagonal complex and diagonal homology. Let (C,.(C,D),d", d°) be the matched
complex of a matched pair (C,D). For each k > 0, let

C,CA(C,ID) = Ckk(C, D)
and define 9;": CP,(C, D) — C£(C, D) and o' : CP(C, D) — C.,(C, D) by

A . ohi o Aj . v hyi
o = ak,kakJrl,k and o, = Ok+1,k%k k-

Then (C2(C,D),d*,02) is a simplicial group [Wei94, §8.5]. Let d2 = Ykt (—1)ig".

Definition 4.10. The diagonal complex of (C, D) is the chain complex (C2(C, D), d%). We denote
the homology of this chain complex by H2(C, D).

4.4. The total complex and total homology. Let (C,.(C,D),d" d") be the matched complex
of a matched pair (C, D). For each k > 0, let

Cy™(C, D) = D Cpy(C. D).
p+q=k
Define d(°*: C\24(C, D) — CF(C, D) by di°* == dj + d.

Definition 4.11. The total complex of (C, D) is the chain complex (CI°*(C, D), d*). We denote
the homology of this complex by HI°'(C, D).

5. EQUIVALENCE OF HOMOLOGY THEORIES

In this section we prove that the homology theories for matched pairs introduced in Subsec-
tions 4.1, 4.3, and 4.4 coincide. Specifically, we describe natural chain maps that induce isomor-
phisms between them and between the dual cohomology theories. We also give formulae for their
inverses. The main result is Theorem 5.3. We start by defining the maps involved.

5.1. The natural chain maps. We begin by describing explicit formulae for natural chain maps
V:CFt 5 CATL: C2 — C2, and U: C° — CTot,
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5.1.1. The map V. The map V: CT°' — C2 is the Eilenberg—Zilber map [Wei94, § 8.5.4]. For
p,q € N a (p, q)-shuffle is a permutation § of {1,...,p+ ¢} such that

B(1) <p(2) <---<Pp) and Blp+1)<Blp+2)<---<B+q).

We write Sh(p, q) for the collection of all (p, ¢)-shuffles, and sgn(5) for the sign of a permutation
. The (p, q¢)-component V, ,: C,, — C’pAJrq of the Eilenberg—Zilber map is

h,B(p+ h,B(p+1 v,B(p v,
Vg = Z sgn(/3) Up+q(€13>)+q 000y, pJ(rI; Yo Op, pw(Lq) 19779 Opvg(l)' (5.1)
BESh(p,q)

5.1.2. The map TI. We describe IT: C2 — C%. For k > 1 define x<*: (C * D)* — (D % C)* by

[><lk (Cl,dl, A ,Ck,dk) = (Cl > dl, o, Cp X dk)
Set Iy = ideo and inductively define I1: C* * D — (C > D)F = (D * C)* for k > 1 by
I, == <" o(le * j_y * 1p). (5.2)

These extend to homomorphisms II,,: C2(C, D) — C(C, D). For example,
I [e1, dq] = [e1 > dy, 1 < dy]
Is[cy, ¢o,dy, do] = [c1ca > dy, c1 <A (ca>dy), (c2 <dy) > da, co < dyds]
I3]c1, co, c3,dy, da, d3] = [c1eac3 > dy, ¢ < (cacs > dy), (cocs < dy) > da,
¢y < (e3> dydy), (e3 < dyds) > ds, 3 < dydads).
An induction on k, using that matched-pair morphisms respect left and right actions, shows that

the II;, extend to natural transformations II: C5 — C2°.

Remark 5.1. The map II; can be described diagrammatically. We represent elements of C by blue
vertices, and elements of D by red vertices; vertical lines are identity morphisms; and crossings are

applications of <
[01, coc3 > dy, o < (03 > dl), (03 < dl) > dy, c3 < dyds, d:s]

k\ H3[C17C2,C3,d1,d27d3]-

So starting with an element of C* x D, we apply > to pairs of adjacent terms wherever possible
until we obtain an element of (D x C)*.

5.1.3. The map V. We now define ¥: C5 — CJ°'. For ¢ > 0 define 7¢: (D 1 C)? — D7 %
C? as follows: regard (dici,...,d,c,) € (D > C)? as a composable ¢g-tuple in C* 1 D*. By
Proposition 3.20 there exist unique d’ € D? and ¢’ € C? such that (dicy) - - - (dyc,) = d'¢ € CP > DY,
For instance,

(dic1)(dac2)(dses) = (dy, c1 > da, ((c1 d2)ea) > ds, 1 < (da(ca > d3)), c2 A ds, c3) € D? % CP.
We define 79(dycq, . . ., dyc,) = (d', ).

[Cla C2, C3, dla d?a dS]

[Clu Co, C3 > dlu 3 d d17 d27 d3]

Yo- - —o- - -0

/
/

Remark 5.2. We can describe 79 via a diagram using the same conventions as in Remark 5.1. For
example 73 is represented by the diagram
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(dh c1 b d27 c1 <9 d27 Co D> d3a Co 4 d3a 03)

(dl, c1 > dz, (((?1 < dz)(?2> > dg, c1 < (dQ(CQ > dg)), Co < d3, Cg)
The maps 79 for ¢ > 3 can be visualised similarly.

e \,\' I (di,c1,dy, ca,ds, c3)
X

For p,q > 0 let p,,: D? % CP * D9+ C? — CP x D9 denote the projection onto the middle two
factors. Define U, ,: (C 1 D)PT9 — CP x D? by

Vg = Ppg o (Tp*7y)

and extend it to a homomorphism ¥, ,: C

Ussldy,c1,. .., ds, c5] diagrammatically by

Vad 7 *
s s
’ ’
»
4
’

y o ox l l (73 % 72)([dy, 1, - . ., d5, c5))
l l l Uso([dy, c1y .0, ds, c5))

(crossed vertices like x indicate omission of the corresponding entries).
We now define ¥,: C¥(C, D) — C°(C, D) by

Uy = Z Vg (5.3)

ptq=Fk

(C,D) — C,4(C,D). For example, we can represent

[dla Ciy.. ’7d57c5]

X- - —o— — -0

°
N

.

A

K——eo——o

- — —0— — —0— — -0
- — —o— — -
x_

Explicit formulae for low-degree terms are given by
Uy [dicr] = Wy o[dier] + Yoaldia] = 1] + [di]
Uy [dycy, daco] = [e1 Qda, ca] + [e1;do] + [dy, ¢1 > d]
Usldicy, daco, dscs] = [dy, ¢ > da, ((¢1 <dg)es) > ds] + [e1; do, o > ds]
+ [c1 < dy, co;ds) + [e1 < (da(ca > d3)), o < ds, c3].

It is routine to verify that the ¥ extend to natural transformations ¥y : C% — C°t.

5.2. The statement of the main theorem. We state our main homology theorem and outline
the proof. We write Ch, for the category of abelian chain complexes and chain maps.

Theorem 5.3. The formulae (5.1), (5.2), and (5.3) determine natural chain equivalences such
that the diagram

ca > clet
{ V (5.4)
s

commutes up to natural chain homotopy. They induce natural isomorphisms
> o HA ~ HTot
of functors from MP to Ch,. In particular, for any matched pair (C,D),
HE*(C, D) = HA(C, D) = H*(C, D).
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Before commencing the proof of this theorem, we record a corollary. Recall that for us, given
a chain complex (C,,d,) and an abelian group A, the cohomology with coefficients in A is the
cohomology of the dual cochain complex (Hom(C,, A), d3).

Corollary 5.4. For any fized abelian group A, the duals of the natural chain maps V, 11, and ¥
induce natural isomorphisms

HE (- A) = HA(-3 A) = Hig (-5 A)
of cohomology functors with coefficients in A.
Proof. Dualising all the maps in a chain homotopy diagram yields a cochain homotopy. O

That V induces a natural isomorphism is the content of a general form of the Eilenberg—Zilber
Theorem. Following [Wei94, §8.5.4] the Alezander—Whitney map A: C2 — CI' is defined as
follows: for p,q such that p + ¢ = n, define A, ,: C2 — C,, by

A,y = 0£+1-~-8Zoﬁg-~-83.

—_—
q terms p terms

Then the map A is defined by
A= P A, (5.5)
pt+q=n
Theorem 5.5 ([Wei94, Theorem 8.5.1]). The map V: C¥*t — C2 of (5.1) induces a natural
isomorphism H2® = HI with inverse induced by the map A: C2 — CT°t of (5.5).

~

Given Theorem 5.5, to prove Theorem 5.3 it suffices to establish the natural isomorphism H¢ =
H2. To do this we fill out a diagram

CA i C:Fot
X / (5.6)

of natural chain equivalences that commutes up to natural chain homotopy. We use the method of
acyclic models (see [Rot88] for instance). The details occupy Subsections 5.3 and 5.4.

We show in Section 5.3 that the model matched pairs (Exx, For) satisfy H*(Eop, For) = 0 =
HpA(f}gk,fgk) for all p > 1. So we can use these as the models in the method of acyclic models.
We deduce that there exist natural chain equivalences between C%* and C2 that induce natural
isomorphisms on homology, and show how to recognise when given chain maps do the job.

In Subsection 5.5, we show that (5.2) and (5.3) are such chain maps. We also give explicit
formulae for the remaining maps Il :== Vo W and M :=110o V.

5.3. Homological acyclicity of model matched pairs. The proof of Theorem 5.3 hinges on
properties of the homology of the model matched pairs (&,,F,). Recall that the object set of
I, =2& «xF,is X,, ={a= (ar,ar) € NxN|0<ar+ ar <n}. Each morphism of I';, is a pair
(a,b) € X,, x X, such that a;, < b, and ar > bg.

The map r x s: I'), = X,, x X, is injective. Hence,

Ly 2 (o) = (r(n)s(n), s(12), - os(m) € X0 (5.7)



HOMOLOGY FOR SELF-SIMILAR ACTIONS AND ZAPPA-SZEP PRODUCTS 25

is a bijective correspondence between I'* and

XW = {(ap,a1,...,ax) | a; € X, air, < i1, and a; g > a4, g for all i}
Since C%(E,,, F,) is the free group ZI't, we have C3*(&,, F,) = ZX ).
Let (ag, ..., a;) denote the generator of ZX*¥) corresponding to (ay, ..., a;) € X¥. Using carats

to denote elision of coordinates, the face and degeneracy maps on C}(E,, F,,) are
P>, _ a >,% _
o (ag,...,a,) = (ag,...,a;...,a,) and o, (ag,...,a,) = (ag,...,a;a;,...,a).

A chain complex (C,, d,) is acyclic if Hy(C,,ds) = Z and Hy(C,,d,) = 0 for k > 1.

Recall that an initial object in a category C is an object v € C° such that wCv has precisely one
element for each w € C°.

The following is well-known, but could not find an explicit reference.

Lemma 5.6. Let C be a small category with an initial object v. Let 1 be the category with a single
morphism 1. Let v: 1 — C be the functor such that 1(1) = v. Let p be the unique functor from C
to 1. Then pot =idy, and (1o p)e: Co(C) = Co(C) is chain-homotopic to ide,(cy. In particular,
(Ce(C), ds) is acyclic.

Proof. Clearly, pot =idy. For each w € C° let 7, € C be the unique morphism from v to w. Fix
k> 0. For 0 <i < k define h': Cy(C) = Cr41(C) by

, [Cos s Cis Ts(er), U5 .-, v] if i >0

hl[Co, c. ,Ckfl] = {

[TT’(CO)7vu---7U] le: 0

To see that h is a simplicial homotopy we need to check that 9°h° = (1o p), that " h* = ide, ),
that '/ = h/~'0" for i < j, that 'h/ = WO'~! for i > j + 1, that o’h’/ = W/ *o" for i < j, and
that o'h/ = hWioi~! for i > j. For the first two identities, we calculate

h°co, ..., 1] = PTr(ey)s Vs - .-, 0] = [v, ..., 0], and
IR eo, .. en1] = O eo, o Chmty Ts(ery)) = [Cov - -+ s Cht)-
The remaining four conditions follow from similar calculations. For example, if 0 < ¢ < j, then
O'hcq, ..., cp_1] = Ico,. .., Cjy To(ey)s Vs - s V) = [COy vy Cim1Ciy o v Gy To(eg)s Uy v oo U]
=h"eo, ..oy Ci1Ciy ey Cy s Cha] = BTN g, - ]

Hence, the simplicial maps (¢ o p)s and idg, ) are simplicially homotopic. So s; == ¥ ((—1)'Aj,
defines a chain homotopy s between (v o p)s and id¢, ) [Wei94, Lemma 8.3.13].
The final statement follows from acyclicity of (Ce(1),d). O

Lemma 5.7. For each n > 0 the chain complex (CY(E,, Frn), d) is acyclic.

Proof. The object (n,0) is an initial object in I';, = &, b1 F,,, so the result follows from Lemma 5.6.
OJ

Chains in Cy (&, F,,) also admit a tractable description. The formula

gﬁ * ‘Frlz 9((p07 q0)7 (pla q0)7 ey (pka q0)7 ey (pka QI—l)a (pk7 Ql))
= <p07p17 <5 PEsq0, - - -5 q1-1, Ql) S Yn(k’l)
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is a bijection between £X x F! and
Y = {(po, csDE Q0 @) € N | i < pig, 45 > Gir, and py 4 go < n}

and induces an isomorphism Cy (&, F,,) = ZYn(k’l).
We write (po,...,DPrqo,--.,q) for the generator of ZY,®! that corresponds to the tuple
(Do, - -, Dk Qo - - - @) € YD, The face maps in the double complex become
ah7i<p07 -y PEsqo, - - - aq1> = <p07 s ai)\ia -y PEs qo, - - ->Ql> and
av,z<p07'"7pk;q07"'7QI> = <p07"'7pk;q07"'7q\ia"'7Ql>-

The degeneracy maps become

0h7i<p07 -« sPE;q0, - - '7Ql> = <p07' -y Di—1,Di5 Piy Pit1, - - -5 Pk Qo, - - '7Ql> and
UU’Z(pOa <« PEyq0, - - '7ql> = <p07' -3 Pksqos - - -5 9i—1594i5 Qs Qit1s - - - ’QZ>'

In particular, for the diagonal complex C2(&,, F,) the face and degeneracy maps are

6A7i<p0’"'7pk;q07"'aq1€> = <p05"'7]/)\1""'7pk;q0a"'7q\ia"'7qk> and
0A7i<p07 -5 PEsqo, - - - 7Qk> = <p07 co s Pi—15Pis Piy Dit1y - - -5 Pk 405 - - -5 Qi—15 Gy iy Git1y - - - 7Qk>

Lemma 5.8. The diagonal complex (C2(&,, Fp), d®) is acyclic.

Proof. Consider the directed graph G, = 0 & 1 & ... “Z' n. Since n is an initial object for
G*, Lemma 5.6 implies that (C,(G?), d,) is acyclic. So it suffices to show that (C2(&,, F,), d?) is
chain-homotopic to (Ce(G?), d).

The group Ci(G}) is freely generated by k-tuples (po, ..., pr) where 0 < p; < p;y1 < n for each
0 < i < k. The functor ¢: G}, — &, given by t(e,) = e, induces a chain map ¢: Co(G}) —
CA(E,, Fn) satisfying tx(po,...,pk) = (o, .., px;0,...,0). The functor p: &, — G* defined by
plepq) = €, induces a chain map p: C2(E,, Fn) — Co(G2) satisfying pr(po, - - - Pk; Gos - - -5 Q) =
(o, - - -, pk). We have py o 1, = ide, (gz). For 0 <i < k define h': CR(En, Fn) — C,f+1(€n,fn) by

hi(pOa"'apk;q07"'aq1€> = <p07'"7pi—1api7pi’pi+17"'apk;oa'"aoaqiaQi+17"'aq1€>'

Direct calculation shows that 0°h° = ideae, 7,) and O**F'h* = (1o p)y.

It is routine to check that 9*h/ = h9710" for i < j and O'W/ = WO~ ! for i > j + 1. Similarly,
o'hl = htlot for i < j and o'h? = WWo'"! for i > j. It follows that the simplicial maps (¢ o p),
and idea g, 7,) are simplicially homotopic. O

We identify some particularly useful chains in the categorical and diagonal homology of
(Eapy For). For each k > 0 define xy, € C%(Eop, For) and yy, € CL(Eap, For) by

T = [f0,2k€0,2k7 fiop—1€12k—15- - -, fkfl,k+1€k71,k+1] = ((0,2k), (1,2k = 1),...,(k, k)) (5.8)
and

Yk = [eo,kaeLka ceey Cl—1k;5 fk,k—l) R fk,l) fk,O] = <07 15 sy k— 15 k7 ka k— 15 ) 1a0> (59)
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Pictorially, xp and y, correspond to the following composable tuples in &y, <1 Fop:

(072](;); °
ieiﬂ i Llj
i l‘k ° i 7"L
‘ 1 (k, k) ‘ (k)
(0,k) $=------ Aee R
i o | ye 1L
| T | i 3
S JE i S
(k,0)

By Corollary 3.10, a matched pair morphism (&, F,,) — (C, D) corresponds to a functor I';, —
C < D taking &, to C and F,, to D. For each v = (dycy, . .., dp_1cx_1) in (C 1 D)*, Lemma 3.25
gives a morphism hZ': I’y — C >4 D such that
dyc, if0<p<k

hZ* —1- —1-p) =
y (fp.2k—1-p€p2k—1-p) {3<Ck1> if £ <p<2k.

For A = (¢, ..., Ck_1,do, - .., dx_1) € C¥ + D* with d, = r(c;) and ¢, = s(d;), Lemma 3.25 applied
to (djco, -+ ,d}_1ch_1,doCh, - - -, dg_1¢,_1) yields a morphism A : Tg — C > D such that
Cp if0<p<k

B L ) =
x Up2k-1-pepat1-p) {dpk if k <p < 2k.

Lemma 5.9. Let (C,D) be a matched pair. For v € (C <1 D)* and X € C* x D we have [y] =
Cy(hZ) (zy) and [\] = C2(hY)(yx). Moreover,

{CE () (@e) | he (Ear, Far) — (€, D)} and  {CR(h)(ye) | he (Eax, Far) — (C, D)}
generate C%(C, D) and C£(C, D) respectively.
Proof. That [y] = Cy*(hZ")(xy) and [A] = C2(h8)(yx) follow immediately from the definitions of

hZ and h5. For the second statement, let h: (Ex, For) — (C,D) be a matched pair morphism.
Then C(h)(zx) = [h(fo2r€o2k);s - - s M(fo-1hr1€8-1k+41)]- So

{CE (M) (@e) | he (Ean, Far) = (€, D)} 2 {CF(W5) (wa) | v € (C = D)} = {[7] | v € (C = D)*},
which generates C7*(C, D). Similarly,
{C (W) (ye) | he (Eany Fax) = (€. D)} 2 {[A] | A € CF + D"}
generates C2(C, D). O

In the terminology of [Rot88, pp. 239-240], Lemma 5.9 says that the functors Ct* and C2 from
MP to Ch, are free with bases {z;} and {yx}, giving the following lemma.

Lemma 5.10 ([Rot88, Lemma 9.10]). If G: MP — Ab is a functor and g € G(Ea, For), then
there is a unique natural transformation o: C3° — G such that a(g,, 7,.)(Tr) = g, and a unique
natural transformation 3: Cf — G such that Be,, 7, (k) = .
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The proof of [Rot88, Lemma 9.10] describes the natural transformations of Lemma 5.10: for
V] € C(C,D), Lemma 5.9 gives hZ': (Ea, For) — (C,D) such that hZ(z)) = [7], and then

aep) (7)) = G(R)(g). Similarly, Bie.p)([A]) = G(h3)(g) for [A] € CF(C, D).

5.4. Proof of the main theorem. To prove Theorem 5.3 we construct a chain equivalence
between C%° and C2 inductively using [Rot88, Theorem 9.12].

Lemma 5.11. The identity map C5(C,D) = ZX K 7X = Cy(C,D) induces a natural isomor-
phism id : HX = HE.

Proof. Fix a matched pair (C,D) with objects X. Identifying C4(C,D) with C5%(C, D) via the
identity map on ZX, it suffices to show that im(d™) = im(d®) in ZX. If [d,c] € CY(C, D),
then d™[d,c] = [s(c)] — [r(d)] = d®[e, s(c)] + d2[r(d),d] € im(d?). If [¢,d] € CL(C,D), then
d®[c,d] = [s(d)] — [r(c)] = d[c = d] € im(d™). O

Proposition 5.12. There exist natural chain maps a: C2° — C2 and B: C& — C° such that
a o 3 is naturally chain-homotopic to idga and (o « is naturally chain-homotopic to idgz such

that o and B lift the natural isomorphism H3* = HE, in the sense that the diagram

777777 e N L NN s Hy —— 0
| | oo @

777777 Lop L oa M, o HE —— 0 (5.10)
| o | 4l

,,,,,, s o T, ore L, o HE — 0

of natural transformations commutes. If o' : C2* — C2 and 3': C& — C%° are chain maps that lift
the natural isomorphism H3' = HS, then they are naturally chain-homotopic to o and f3.

For k > 0, let zy,y, be as in (5.8) and (5.9). If for each k > 0, ag: C& — C is a natural
transformation such that d® o oy (z1) = ap_1 0od®(xy,), then a = (ay) is a natural chain equivalence
from C2% to C2. Similarly, if for each k >0, B: O — C£ is a natural transformations such that
™o Br(yx) = Br_1 0 @ (yx), then B = (B) is a natural chain equivalence from C to CB°.

The result is standard and follows from [Rot88, Theorem 9.12], but we include some details to
describe the resulting isomorphisms in homology explicitly.

Proof. The morphisms «y and f, are induced by the identity maps on objects. We start by
constructing «. Suppose that there exists maps «,, for n < k such that the right-most n + 1
squares of (5.10) commute. Consider the matched pair (Ey, For) and let xy, € CF(Eap, Far) be as
in (5.8). Commutativity of (5.10) implies that d®ay_d™ = (d®)?ay_y = 0. Lemma 5.7 implies
that (C2(Eq, Far), d™) is acyclic, so there exists T, € C&(Eag, Far) such that d2(Ty) = ap_1d™(x4).
So Lemma 5.10 yields a unique natural transformation ay: C5* — C£ such that a,gng’IQk)(xk) =Ty
and d®ay = ap_ d™.

A similar construction using y, and Lemma 5.8 gives (. By [Rot88, Theorem 9.12| oy and [y
induce natural chain equivalences v and 8 and these are, up to natural chain homotopy, the unique
chain equivalences lifting the isomorphism of Lemma 5.11 U

Proof of Theorem 5.3. The result follows from Proposition 5.12 and Theorem 5.5. U
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5.5. Explicit formulas for the natural isomorphisms between homology theories. Propo-
sition 5.12 yields a natural isomorphism C2 = C%, and its final statement says how to recognise
chain maps «, § that induce such an isomorphism. We show that the map IT of (5.2) and II := VoW
are such chain maps, and describe chain maps inducing the remaining arrows in (5.6). We first
examine how II; behaves on the model matched pairs (&,,, Fn)-

Lemma 5.13. Fiz m, k > 0, and consider Iy: C&(Em, Fn) — C2(Em, Fn). Then
Hk(pm <oy PEsqoy - -y Qk> = <(p07 q0)a teey (pka Qk)>

In particular, the element y, € CH(Eqx, For) from (5.9), satisfies

i (yx) = [for—1€0k—1, fre—2€1 k-2, fr21€k—2.1, fe—1,0€k-1,0]- (5.11)
Proof. We begin by establishing (5.11). We proceed by induction on k. The case k = 0 is trivial.
Suppose inductively that the analogue of (5.11) describes IT;_;(yx_1). Recall that

Yk = [Cok €1ks -+ -5 Ch1k5 flk—1s -+ -5 fr1, frol,

and let

Mec1 = (€1 oy €kt frkts - - o fra] € O (Eatrory, Farho1))-
By Lemma 5.9 there exists a morphism hﬁﬁl: (Eak—1)s Fo—1)) — (Eaky Far) such that A\ =
Cit1(h5_ ) (Wk—1). The inductive hypothesis gives

(e, * ey * 15, ) (Yk) = [€oks fra—1,€16—1, f2k—2s -y k22, [k—1.15€k—1.15 fE0]s

and applying ><* yields (5.11).

For the second statement, let v = (po,...,Pk;qo,--.,qr). Lemma 5.9 gives a morphism
he: (Eas For) = (Em, Fin) such that CR(h5)(yx) = . Naturality of I, implies that ITy(y) =
Ci(h) o Ik (yk). So the result follows from (5.11) and the definition of hZ. O

Proposition 5.14. For k > 0, we have I;_; o d®(y;.) = & o I (yx). In particular, II: C2& — C5°
induces a natural tsomorphism on homology.

Proof. Fix k > 0. By Lemma 5.13, for each 0 < i < k, we have
1002 (y) = (0, 1,..., 3. k—Lkikk—1,....k—3q,...,1,0)
= ((0,k), (Lk—1),. oo, (i k — 1),y (k= 1,1), (K, 0)) = & o I (yp).

A similar calculation gives Iy, 0 02 (yx) = 0% o i (yx) and so @ o Iy (yx) = I 0 d®(yx). The
final statement follows from Proposition 5.12. O

We next examine how the map ¥ of (5.3) behaves on the model matched pairs.

Lemma 5.15. Fiz k, m > 0 and a = (ay, ...a;) € C;(Emn, Fm). We have

k
Uy (ag,...,ag) = Z(aOL, coalialt el (5.12)
=0
In particular, x), € C7(Eax, For) as in (5.8), satisfies
k
() = S0, 1,00 i — 1,62k — i, 2k —i — 1, k+ 1, k). (5.13)

=0
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Proof. The formula (5.7) gives a bijection between composable g-tuples in I',,, = &, > F,,, and the
set X\?. We claim that under this identification, if (ay,...,a,) € X9, then

To(ao, -, ag) = ((ag, ), - -, (ag, agty), (ag, ag), (ars ag) - .- (ag, ag)) (5.14)
in T'¢,. The tuples ((af, af), (a5, af), ..., (af,al)) and ((af,alt), ..., (al_,al), (ak, al)) belong to

E1 C I and F1 CT'¢. Since r x s: I'), = X,,, x X,,, is injective, and factorisation in &£, > F,
is unique by Proposition 3.20, the formula (5.14) follows.

Since W, , = p,40(7,%7,) by definition, and ¥;, = % /W, ;. _; the identity (5.12) holds; and (5.13)
follows from (5.12) since zy = ((0, 2k), (1,2k —1),..., (k, k)). O

Proposition 5.16. For k > 0, we have V;_; o d™ = d™" o W;.. The chain maps ¥: O — CIo
and I1: C — C2 are natural chain equivalences inducing isomorphisms in homology.

Proof. Let a = (ay,...,a5) € C7(Em, Fm). For each 0 < i <k,

U100 (a) = Z (aOL,...,aﬁ;af,...,aﬁ,...,akR) + Z (aOL,...,af,...,aé;ag,...,a@
0<p<i i<p<k
= Z 82}71; oW,k p(a)+ Z 8zh oW,k p(a)
0<p<i i<p<k
Consequently;,
Up_jo0d™ = Z (=1)" 81) p O Vpk—p + Z ahO\Ilpk pr
0<p<i<k 0<i<p<k

Using at the third equality that, 95 o ¥, = 0 and oo U0 = 0, we calculate:

k k—p
dTOto\:[jk:Z ( ( )Hpavoq/pk p+z 8’10111,,,;9 p)

p=0 \i=0 1=0
— 1 v h
= Z —1)'0_, 0 Wppp + Z 1)'0; 0 Uppy
0<p<i<k 0<i<p<k
k
pAv pah
+ Z(_l) g oVpr—p+(—1) 8p oW,k p
p=0
k—1
> t h
== \I/k‘—l od + Z(—l) (ag o \IItJi‘—t - at+1 o} \Ijt-i-l,k:—t—l)'
t=0
So d™ o U, = U,_; o d™ because
v/ L L. R R\ __ L L. R L . _R R
Alag, - a0, ) =(ag, - a5 a4, - ay) = at+1< C s Q1 Oy, - O )

Since I = Vo ¥ and V is a chain map, do | o i(z;) = I;_; o di*(x;). So Proposition 5.12
shows that II is a natural chain equivalence inverse to II. Theorem 5.5 implies that ¥ is also a
natural chain equivalence. O
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To determine an explicit formula for II; we combine the formula (5.3) for ¥, with the for-
mula (5.1) for the Eilenberg—Zilber map V. Explicit formulae for the first few II; are

i [dycq]) = [er; |+ [ 5 di]

Hy[dicy, daco) = [cr dy, o5, 4 [cr, 5 do] — [ c13da, ]
+ [, s dy, e > dy
Ws[dicr, docy, dacs] = [dy, c1 > do, (1 <da)ea) > ds; |+ [, ,cijda,comds, |
—[ e, sde, o ds)+ e, 5 da,co>ds]
+ [ c1ada, eoids, | —er<dy, co; d3, ]
+ e <dy, o, 5, Ldsl 4+, se1<(da(ea>ds)), e <ds, cs).

Remark 5.17. The formula (5.3) for ¥) was not initially obvious to us. We found formulae for
Iy for k£ < 3 using a computer-aided search predicated on formulae that involved factorisation
in C 1 D of the element dyc; - - - dycy, interspersed with objects to obtain elements of C* x DF.
We searched for, and found, integer coefficients that solved a Z-linear equation ensuring a chain
map that inverts II; on homology. With those in hand, we could guess, and then check, a general
formula for I, and then reverse-engineer a formula for Wy.

We can also translate between categorical and total chains using the maps ¥ and M =1lo V.
For low-degree terms M: @,k Z(CP * D?) — C}*(C, D) is given explicitly by

B ([c], [d]) = [] + [d]
My([er, cal, [e3;di], [da, ds]) = [e1, ea] + [c3, di] — [e3 > dy, c3 < dy] + [da, d3]
[

’I‘3([C17 Co, 03]7 [047 Cs; d1]7 [CG; do, ds] [d4, ds, dﬁ]) C1, C2, 03] [(0405) > dy,cq < (05 > d1>7 Cs5 B dl]

— [eas 5> dy, c5 <9 dy] + [ea, €3, da]
[Cﬁ,d ] [CGDdQ,CGQdQ,dg]
+

+

ce < da, (co A da) > d3, c6 < (dad3)] + [da, ds, dg].
5.6. A spectral sequence and a Kiinneth Theorem.

5.6.1. A spectral sequence. There is a spectral sequence that computes the total homology of a
double complex; this and Theorem 5.3 compute of the homology of C > D.
For fixed p € N, the sequence

d;,2 d;,l d;,o
’ » Up2 Cp,l CP,O (5-15)

(the p-th column of the double complex (4.2)) is a chain complex with homology groups
H) (C,D) = Hy(Cpa,dy,). (5.16)

Since df jodl ., = —d! odp,, ., the maps d} descend to homomorphisms JZ H)., (C,D) —

H} (C, D). For each ¢ € N, the sequence

Th ~h ~h

B my e,D) -t 1y (€,D) —20 1y, (C,D) (5.17)

is a chain complex. We define HI’}H 2(C,D) to be the p-th homology group of this complex,
H'HY(C,D) = H,(H (C,D),d" ).
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We define H ;Hg(C, D) symmetrically by first considering rows of (4.2) and then columns:

H(;H]})l(Cu D) = Hq<H£o<Ca D)u d;);,o)'
Corollary 5.18 (cf. [Wei94, §5.6]). Let C,o be the matched complex of a matched pair (C,D).
Then there are homology spectral sequences { EM" dhory and { ES" dihry with first pages EM' =

p,g 7 TPq L |

v vh,1 __ h : hv,l _ Jh vh,1 _ Jqu
H! (C,D) and E}' = H)' (C, D) with d"* = d" and d"™' = d*, and second pages
hv,2 __ h v vh,2 __ v r1h
EM? = H'H!(C,D) and E"*=H/H(C,D),
that both converge to the categorical homology of C >1D.

We will use these spectral sequences to compute the homology of examples in Section 6.

5.6.2. The Kiinneth Theorem for products of monoids. Let S and R be monoids. Define a matched
pair (S, R) by s>r = r and s<r = s. The monoid S > R is just S x R. There is an isomorphism of
double complexes Co(S) Rz Co(R) = Co o taking [si, ..., 5, @[r1,...,7q) 10 [S1,. .., Sp, 71, ..., 7]

Theorem 5.3 implies that H,(S x R) & HIY(S,R) = H™(C,,). So we recover the Kiinneth
formula [Wei94, Theorem 3.6.3]: an unnaturally split exact sequence

0 — Bpigen Hp(S) @ Hy(R) — Hy(S x R) = @pyqn_y Tory (H,(S), Hy(R)) — 0.

6. EXAMPLES AND HOMOLOGY COMPUTATIONS

In this section (specifically in Section 6.4) we use our results to compute the homology of matched
pairs that are like pullbacks of odometer actions over the path categories of directed graphs. The
technical results we develop along the way apply to more-general systems such as Exel-Pardo
self-similar systems and k-graphs.

We first consider, in Section 6.1, matched pairs (C,D) in which D = E* for a directed graph
E. We show that the vertical homology H.,(C,E*) of (5.16) vanishes above degree 1. This is
unsurprising since directed graphs are 1-dimensional; but we could not find a general theorem that
applies, so we prove that H) (C, E*) = 0 for ¢ > 2 by direct computation.

In Section 6.2 we consider matched pairs (C, D) where C is a disjoint union | |,,cpo C,, of monoids.
We describe an isomorphism between H[ (C,D) and the direct sum @,cpo He(Cy; ZuD?) of the
homology of the monoids C, with coefficients in ZuD?. The Universal Coefficient Theorem gives
a short exact sequence that computes Hﬁ q(C , D) as an extension of an appropriate Tor-group by
Pcpo Hp(Cu) ®ze, ZuDI.

In Section 6.3 we restrict further to C, = Z. We deduce that Hﬁq(Z x DY, D) vanishes in degree 2
or more, and compute H{! (Z x D°, D) and H} (Z x D°, D) in terms of the groups of invariants
and coinvariants ZuD?1.

Finally, in Section 6.4 we compute H(Z x F°, F*) for matched pairs consisting of a bundle of
copies of Z acting like odometers on the path category of a directed graph F'. We show that in
the second spectral sequence of Corollary 5.18, only ng(l]’Q, Ef,%’Q, Egﬁ’Q, and Ef]}Q can be nonzero.
So the sequence converges on its second page, yielding an explicit formula for H}(Z x F9 F*) in
terms of a weighted incidence matrix in Mpo p1(Z) (Proposition 6.14).



HOMOLOGY FOR SELF-SIMILAR ACTIONS AND ZAPPA-SZEP PRODUCTS 33

6.1. Matched pairs involving path categories of directed graphs. Let F be a directed
graph and suppose that (C, E*) is a matched pair. We say that (C, E*) is a length-preserving
matched pair if |c>«a| = |a] for all (¢, a) € C x E*.

We write N, , for the subgroup of C, , generated by the nondegenerate vertical chains chains
[c;dy, ..., dg) such that d; ¢ D° for all 1 < i < q. By [Wei94, Theorem 8.3.8], the group HY (C, E*)
of (5.16) is isomorphic to the g-th homology group of (N, d; ,|n,.)-

For a € E* we write o' for the i-th edge of a. So a = a'a?---al®l. For 0 <i < j < |a|, we
define al™!! € B~ by o = a/al"la” for some o/ € E' and o’ € E*1=7. For example, ali-14 = 4

for 1 <i < |al, and a = al%Uaialbll for each 1.

Proposition 6.1. Let C be a small category and let E be a directed graph, and suppose that (C, E*)
is a length-preserving matched pair. Taking the convention that the empty sum is zero, for p > 0
and g > 1, define s, ,: Ny g — Np g1 by

S i, i il
i— 1,|01
sy c<1a1 ol ol L ay)

=1
forceCP? and a = (ay,...,qaq) € (E*)? with s(c) =r(ay). Then for q > 2,
q

2 " 4, =idy,, - (6.1)

pqpq pqlpql

In particular, for ¢ > 2 we have ng(C, E*) =0, and there is a long exact sequence

o HRL,(C EY) » BV 4 EYYY, - HX(C,E*) » BNy 4 EYS, » HX L (CEY) -
Proof. Fix ¢ > 2. We write d = @,d,,, s = sy and Ny == @, N,,. The restrictions

0;: Ny — Ny of the face maps satlsfy

[cqag;ag, ... a if 7=0
Oi(le;ou, ... aq)) = S [ oy ooy, .oy f1<j<g-—1
lc;an, ... -] if j =gq,

and dy = Y9_o(—1)70;.
We first claim that for j > 3 we have 0; 0 s = s 0 0;_;. Indeed,

lon|—1 )
0i(s([c;on, e, ... aq])) = — Z 0; c<loz102 1, al,a[f’laln,ag,...,aq])
‘al‘ ' [0,i—1
=- 2 eaal™ il ol 0 5(as, .. ay)]
= S([C7 aq, 8]‘_2(042, R aq)])

= 5(0j-1([c; o, g, ..., a))).
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Using this at the final equality, we obtain

g+1
dos+sod=> (- 805+Z 1)/s 00,
=0
q+1 ‘ q )
:8005—0105+6205—|—(Z(—l)zﬁios)jLsoao—so@mL(Z(—l)J508j)
i=3 =

q+1
= Ghos—Oios+dos+sod—sodi+3 (1005~ (~1)s0d; )
7=3
=0yos—0108+008+s00y— s00.

So it suffices to show that

dyos—010os+0y0s+s500)—s00; =idy, . (6.2)
or this, ix r = |c; 01, ...,04| € . Let [ := |a1|. We claim that
For this, fi [c;an,...,a. € N,. Let | = |au]. We claim th
(Opos—0108)(x)=x— [c<10z[10l 1, ol g, ). (6.3)
To see this, we compute:
-1 ‘ -1
aOos( ) 80( Z[an[fl . O[La[lll}ao@) ): an[OZ Zl7a2a--'7aq]7 and
i=1 i=1
S 01, i i S 01, i
6105(33):81(— [caa ol al, 2,...,%]):— e o™ ay, L ay).
i=1 =1
So
S 04, [i 051, fi-1
(Opos—01035)(x) :Z( o ol ay, . al + [eaal o Th ,a2,...,aq])
i=1
telescopes to (6.3). Next, we claim that
-1
(s00y—s00;)(x) = (Z[cqa[lm U, al,ag”}ag,ag,...,aq]) +[c<10z[10l 1, ol ag, a3, ). (6.4)
i=1
Let m = |ap|. Again, we compute:
m—1
sody(z) =s([cqar;ag,. .., 0 c<10z[2m ! oz2,a[21m],a3,...,aq], (6.5)
=1
and
sodi(x) = s([;anaa, ..., ay))
l+m—1 ] ) )
=— Y [e<a(aa) ™ (aan)’, (aran) ™ ag, .. ay)
i=1
= [0,i—1]. [i,1] [0,0—1].
= —<Z[C<‘Oé1 - cad, Oég,Oég,...,Oéq]> [caar” ™ al, ag,. .. ay
i=1
~ 0i-1]y, i fim]
—( [c<(aqay'™ ),aé,a;’m,ag,...,aq]).
i=1
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Subtracting (6.5) from this equation yields (6.4). Now we add Equations (6.4) and (6.3), and the
[0,1—1]

terms [c<ai” ;al, g, az,. .., q,) cancel, giving
-1
(Opos—010s+s00y—so0d)(x)=x+ (Z[CQQ[IOZ U, al,a[fl]ag,ag,...,aq]). (6.6)
i=1

Finally, we compute

-1 -1

Dy 0 s(x) :82(—2[0404[0’ Yoot ol o ...,aq]) = Z[cqa[m Yool ollay, o ay).

i=1 i=1
Adding this to (6.6) gives (Jpos —d1 05+ 0y 08+ s00Jy — s00;)(x) = x, which gives (6.2).
Now fix a € ker(d,—1) N N,. Then (6.1) gives
a = dy(sq(a)) + 54-1(dg-1(a)) = dg(sq(a)) € ran(d,),

s0 Hy(Np.) = 0. Theorem 8.3.8 of [Wei94] gives H} (C, E*) = Hy(Ny.) = 0. The long exact
sequence exists by definition of convergence of a spectral sequence [Wei94, p.124]. 0

Remark 6.2. The proof of the preceding lemma relies on treating the empty sum as zero, prompting
a quick reality check of the edge-case where [c;aq, .. aq] € N, with oy = e € E'. Let z =
[c;e,an, ..., ay]. Since s7 () = 0, (6.1) for z collapses to sY d (x) = z, so the cancellation

p.g—1° pg—1
that led to (6.2) appears to fall down.

But all is well: for j > 3 we have 9;([c;e,qn,...,qy]) = [c;e,k] for some k € (E*)7 1
and so sy 1(95(x)) = sp, 1([c;e,K]) = 0 So sy, 10dy, () = sy, (lc<esar, ... a)) —
spa1llciear, ... ag]) and all the terms in the resulting sums cancel except the first term
—(—lgeal,...;aq) =xof 57 ([c;ean, ... ).

Recall that {E;j’;”, dthr} is the spectral sequence of Corollary 5.18, which in our current setup

satisfies E%* = HUH!(C, E*).

Lemma 6.3. Let C be a small category and let E be a directed graph, and suppose that (C, E*) is a
length-preserving matched pair. For p >0 and ¢ > 2, we have s, , o dgq = z,qﬂ o081, We have
E;’Z’Z =0 forallq>2, HY(C, E*) = E%Q, and for each n > 1 there is a short exact sequence

0 — ngf — HX(C,E*) — Ef}flzl — 0.

Proof. Fix (c;a) € CP™ % (E*)?. We compute

'azll 1”2“ 0i-1. i filaal

h i— : i,|aq

dp,qul O$p+1q q+1 C<10z1 ; 0, Qg y 2y - e ,qu].
i=1 k=0

Analogously to Lemma 4.4, we observe that for 0 < k < p,

(04=1], i []aal] _ ahk (0=1]y, i [i|aa]]

aqu[ Qo ag,a M ag, o) = [Op0[car al, a7 T g, oy
— [gk [0,i—1], (3] ]

=[0,0ld aar™ Val, oM an, . ).
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Write (¢, > a), for the r-th entry of c> o € (E*)?. For k = p+ 1 we have

8;5111[ aalt ol altlell o, g
=[98 e et i (e a0t ) b (0, o, )]
[8]”’“[ | < [11’i 1. ;(cp a), (cp> a)[z leall J(ep> )y (cp> )yl
Hence,
pt1
dz,qul © 5;+1,q[c; a] = kzo( 1)k Spaq © ahk[c al = Spg © dz,q[c; al.

Thus, the s, , descend to sections of the differentials between the E;j’}] ! and the resulting homology
groups E”ZQ vanish for ¢ > 2. So the spectral sequence stabilises by the second page, and short

exact sequences follow from the associated filtration. O

6.2. Matched pairs involving bundles of monoids. In this section (C,D) is a matched pair
in which C = | |,epo Cy is a bundle of monoids over C° = D°. For each u € D and ¢ > 0, the free
Z-module ZuD? generated by uD? = {d € D? | r(d) = u} is a left C,-module under the action
c- (Zdepq ndd) = > gepa na(c>d).

For a monoid S, the categories of left (respectively right) S-modules and left (respectively right)
Z[S]-modules are equivalent. Given a left S-module M we can compute the homology H,(S; M)
of S with coefficients in M as follows: fix a projective resolution --- — P, — Py — Z — 0 of the
trivial S-module Z. Then H,(S; M) is the homology of the chain complex --- — P ®@zg M —
Py ®z5) M — 0: that is, H,(S; M) == Tor”(z; M).

By taking the bar resolution of the trivial (right) S-module Z we arrive at a more familiar
description. For n > 1 let B, be the free S-module generated by {[s1,...,s,] | s; € S}. Let By be
the free S-module generated by the symbol []. Define b,: B, .1 — B, by

bulS0, -+, Sn] = [S1,-..,8 +Z ) [50s - -+ s Si—18is -+ 8n) + (—=1)" 51, ..., Sn_1]5n (6.7)

(2

=1
forn>1and b_;: By — Z by b_1[ ] = 1; note that by[so] =[] — []so. The group of p-chains with
values in M is

Cp(S, M) = Bp ®Z[S] M.
The boundary maps d, == b, ®idy: Cpi1(S; M) — C,(S; M) for p > 1 satisty

dy([s0, .-y 8p] @mM) =[S1,...,5 ®m+z )80y -+« s Si_18is -+ -5 Sp| @M

= (—1)p+1[30, . sp,l] ® Sp - m,

and dy: C1(S; M) — Co(S; M) satisfies do([so] @m) = []®@m — [|®sg - m. Then H,(S; M) =
ker(d,,—1)/im(d,). Taking M = Z, the trivial S-module, recovers Definition 4.1 if C = S.

Given a matched pair (C,D) where C is a bundle of monoids, we can compute the horizontal
homology of the matched complex using the homology of the monoids C,.

Proposition 6.4. Let D be a small category and let C = | |,epo Cy be a bundle of monoids over D°
such that (C, D) is a matched pair. Then C,(Cy; ZuD?) 3 [co,...,cp) @d — [co, ..., o156, d] €
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Cpq induces an isomorphism

ng(C’D> = @ Hp(CU;Zqu),

ueDo

and there is a short exact sequence
0 = @uepo Hy(Co) Dz, ZuD? — HP (C,D) — @yepo Tory " (H,_1(C,), ZuD?) — 0.

Proof. In C,(Cy; ZuD?) = B, ®@yc,] ZuD? we have [c1,...,¢)|@d = [c1,...,¢p-1,5(cp-1)] @ ¢, - d.
Consequently, the map 7, ,: @yepo Cp(Cy; ZuD?) — C,, defined by

Tpq([Cos - -y ¢l @d) = [co, ..., cpo1;¢p> d]
for [co, ..., c,) ®d € Cp(Cy; ZuD?) and u € DY is an isomorphism. Moreover,
d’;q o mpi14([Cos -+ Cpr1] @ d) = d’;q[cl, ey Cpy Cpr1 D d]
P
= [617 s CpiCpp1 B d] + Z(-l)Z[C(), ey Cim1Ciy o Cpy Cpy 1 B d]
i=1
+ (—1)p+1[60, sy Cp—1,CpCpy1 P d]
= mpq 0 dy (o, .-, cpy1] @ ).
So H" (C,D) = @,cpo Hy(Cy; ZuD?).
Since Z is a free C,-module the short exact sequence follows from [Wei94, Theorem 3.6.1]. [

6.3. Matched pairs involving integer bundles. In this section we consider matched pairs
(C, D) where C = D°x Z. If M is a Z-module, then M? = {m € M | k-m = m for all k € Z} is its
submodule of invariants and My = M/(k-m —m | k € Z, m € M) is its module of coinvariants.

If X isasetand>: Z x X — X is a left action, we write Z\ X for the set of Z-orbits in X. We
denote the orbit of x € X by [z] € Z\X, and the set of periodic points of X by

Per(X) = {z € X | there exists k € Z \ {0} such that k>xz = z}.

Then Z\Per(X) C Z\ X is the set of finite orbits in X.
Each left action >: Z x X — X induces a corresponding left action -: Z x ZX — ZX.

Lemma 6.5. Let X be a set, and>: Z x X — X a left action. There are isomorphisms
do: Z(Z\X) — (ZX)z and ¢1: Z(Z\Per(X)) — (ZX)*
such that ¢o([d]) = d+ (k-m —m | k€ Z, m € ZX) and ¢,([d]) = Xaepq d'.

Proof. For the first isomorphism, regard ZX and Z(Z\ X) as the sets of finitely supported Z-valued
functions on X and Z\ X respectively. Define 7: ZX — Z(Z\X) by 7n(f)([z]) = X yefsg f(y)- Then
ker(m) =(k-m—m |k € Z, m € ZX), so w descends to an isomorphism (ZX )z = Z(Z\X) whose
inverse is the desired map ¢q.

For the second isomorphism, fix m = cx a,x € ZX, where each a, € Z. Then ),y a,r =

Z[[y]]eZ\X Za;e[[y]] azx. For each k € 7Z,

kem—m= > (Z az(kbx)—ax:c).

[vleZ\X " z€ly]
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Hence, k- m —m = 0 for all k € Z if and only if a, = a, whenever [z] = [y]; that is, a: v — a,
is constant on orbits. Since a is finitely supported, if m € (ZX)Z then a is nonzero only on finite
orbits. Hence, the formula for ¢; determines an isomorphism. OJ

Proposition 6.6. Let (C,D) be a matched pair with C = D° x Z. There are isomorphisms
ag: Duepo Z(C\uD?) — H{ (C,D) and ay: D,epo Z(C,\ Per(uD?)) — HY (C, D) satisfying

ao([d]) = [r(d); d] + im(d’&q) and «a([d]) = Z (1;d] + im(d?,q). (6.8)
d’e[d]
Moreover,
Duepo (Zqu)Z ifp=20 Duepo Z<CU\UDQ> ifp=0
H! (C.D) = @uepo (ZuD)? ifp=1 = Byepo Z(C,\ Per(uD?)) ifp=1 (6.9)
0 otherwise 0 otherwise.

Proof. We identify the group ring Z[Z] with the ring of Laurent polynomials Z[t,t7!]. Let
¥: Z[t,t7'] = Z be evaluation at 1, the homomorphism that sums coefficients.
As in [Wei94, Example 6.1.4],

i 00—zt Sz Sz 0, (6.10)
is a projective resolution of Z by Z[Z]-modules. Since any projective resolution computes the
homology of a group, it follows that Hy(Z; ZuD?) = (ZuD?)z and H,(Z;ZuD?) = (ZuD?)%, and
that H,,(Z; ZuD?) = 0 for n > 2. The first isomorphism of (6.9) follows from Proposition 6.4; the
second follows from Lemma 6.5.

Let Ny = (k-m—m | k € Z, m € ZuD?). To establish (6.8) we describe the chain map
connecting the bar resolution (6.7) with the resolution (6.10). Let ¢, be the generator of Z[Z]
corresponding to n € Z, and let [n] be the basis element of the Z[Z]-module B (by definition, B,
is the free Z[Z]-module over Z, but who wants to write Z[Z]|[Z]?) Then the diagram

0 Zlt, fl] M Z[t, tfl] DN 0
l lt”ﬂ[lwn Jt"e[ ]-6n Jid (6.11)
Byt p b L p g .

commutes. The homology He(Z; ZuD?) as computed by each of these resolutions is obtained by
tensoring by ZuD? on the right, replacing ¥ ® 1 and b_; ® 1 with 0, and taking homology.

Hence, for each u € D°, the vertical map ¢" + [ ]-0,, in (6.11) induces an isomorphism coker (X (t—
1) ®idgzype) — Ho(Z, ZuD?) taking t° @ d +im(x (t — 1) ® idzypa) to d+im(by). The isomorphism
(ZuD1)y — coker(x(t — 1) ® idzupe) — Ho(Z,ZuDT) of [Wei94, Example 6.1.4] carries d + N, to
' ®d+im(x(t — 1) ® idzupe). So composing these maps gives an isomorphism ¥, o: (ZuD?)z —
Hy(Z; ZuD?) such that 1y 0(d + Ny) = d + im(by ® idzype) = d + im(df ).

Similarly, t" +~ [1] - 0, restricts to an isomorphism ker(x(t — 1) ® idzup«) — Hy(Z, ZuDT)
taking 34 ka(t° ® d) to 34 ka[1; d] +im(d} ). The isomorphism (ZuD9)” — ker(x (t — 1) ® idzypa)
of [Wei94, Example 6.1.4] carries " kqd to 3 k4(t° @ d). So composing these maps yields an
isomorphism t,1: (ZuD?)* — Hy(Z; ZuD?) given by vy 1(Xqkad) = 34 ka[l; d] +im(d} ).

Lemma 6.5 gives an isomorphism ¢, : Z(C,\uD?) — (ZuD7)z such that ¢, o([d]) = d + N,
and an isomorphism ¢, 1 : Z(C,\ Per(uD?)) — (ZuD?)” such that ¢, 1([d]) = Zgepq d’- The maps
Q; = @yepo Yu,i © Gu, satisfy (6.8). O
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h

The next lemma helps to compute the terms £}

in Corollary 5.18.

Lemma 6.7. Let (C,D) be a matched pair with C = D° x Z. For d = (dy, . ..,d,) € Per(D?™!), let
O(d) = min{n > 1| n>d=d}. For each 0 <i < q, let 0;: D' — D be the face map of (4.1).
Regarding O(d) <d € {s(d)} x Z as an integer, for 0 <i < q define

nid) = {<O<d> 4d0)/0(00(d)  if i =0
O(d)/0(0i(d)) ifi>1.
Then p;(d) is a nonnegative integer for each i.
Proof. First suppose that i > 1. It suffices to show that O(d) > 0;(d) = 0;(d). By Lemma 4.4,
d=0(d)>d = (0(d)>do, (O(d) ado) > dy, ..., (O(d) < (do . . .dg-1)) > d,).
Hence, (O(d) a(dy.. .dj,l)) >d; =d; for all 1 < j < gq. In particular, for ¢ < ¢, we have

(O(d) ady ... di )b (di-adi) = (O(d) ady ... di o) > di 1) ((O(d) ado. .. d;—1) > d;) = dird;.

Thus for 7 < ¢, we have

O(d) > 0;(d) = (O(d) >do,...,(O(d)<dy...di—3)>d;i_o, (O(d)<dy...d;i—o)> (d;i_1d;),

(O(d) <dy...di) > disr, ..., (O(d)<dy ... dy1) > dy)
= (do,...,di—9,d;i—1d;, diy1, . .., dy) = 0i(d).

When i = ¢+ 1, O(d) > 9y+1(d) = 0,41(O(d) > d) = 9y41(d); and when i = 0,

(O(d) adp) > 0p(d) = (O(d) ady) > (d1,da, . .., dy)

= ((O(d)> )1, (O(d) > d)a, ..., (O(d) > d)y) = (da,....dy) = p(d). O

Proposition 6.8. Let (C,D) be a matched pair with C = D°x Z. Forp € {0,1}, let dllhq: E;Zil —
E;’Z’l, q > 0, be the differentials in the first sheet of the spectral sequence E;)’Z of Corollary 5.18.

Let ag, oy be as in Proposition 6.6. For 0 < i < q, let 8;: DI — D be the face map of (4.1),
and let p;: Per(D?) — Z be as defined in Lemma 6.7. Define

Aoy Buepo Z(C\uDT) — Dyepo Z(C,\uD?)  and
A1y Byepo Z(C,\ Per(uDIH)) — @,epo Z(C,\ Per(uD?))

by
q

Boglld]) = (0] and  Aug(ld]) = (Do)

i=0 =
Then oy o Ay, = dzlhq oay, forp = 0,1 and all ¢ € N. In particular, Egﬁ’Q is isomorphic to the
homology of the chain complex (Byepo Z(C,\uD?®), Np,), and Ef}ﬁ2 is isomorphic to the homology
of the chain complex (B,cpo Z(Cy,\ Per(uD?®)), Ay ,).

Proof. To see that ag o Agg = djj , © g, we use that dff , = dj, to compute:

dy o (o ([d])) = dg 4 ([r(d); d]) + im(dg 4 41) = ao(Do([d])).
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To see that a; 0 Ay, = diq o oy, we first claim that for d € Per(D9) and n > 0,

n—1
s d) i (1) = S [1: > d) + im(d, ) € HY, ., (C. D). (6.12)

=0
We argue by induction. The case n = 0 is trivial: [0;[d]] is a sum of degenerate chains. Suppose
inductively that (6.12) holds for n. We calculate, using (6.12) at the third equality:

0 + im(dy a+1) = d}llq—i—l[]‘ n; d] + im(d} a+1)
= [nid] = [n+ Lid] + [Ln e d] + im(dy 4 )

221j>d [n+1;d) + [1;ned] +im(d} )

Il
H M: |

1jl>d [n+ 1;d] + im(d} 1),

and rearranging gives (6.12).
Since [d] = {j>d: 0 <j < O(d) — 1}, Equation (6.12) gives

0(d)-1
i ([d]) = ;{:H[lsd’]ﬂm(d’iqﬂ): X_% [1; 5> d] +im(d} ;) = [O(d); d].

Using this at the first line, we calculate:

di (0 ([d])) = di ,([O(d); d]) + im(d} ;)

g+l
= [O(d) < do; Do (d Z 0;(d)] + im(dy )
=2PWW@MW@@@HMMM- (6.13)
For any d’ € D? and any n > 0 we have
no(d')—1
(nO(d);d] +im(di ) = > [1;jvd]+im(d],)
nj;O(d’) 1
=> > ;> (kO(d)>d)] + im(d},)
_O(d';;
=n Z [1;5 > d]+im(d} ) = n[O(d); d] + im(d},).
Applying this to each term of (6.13), we obtain
g+l
dy g(n([d])) = ZO(—l)im(d) [0(0,(d)); 0i(d)] + im(d7 )
g+l
= Z d)a ([0:(d)]) = 1 (Arq([d]))-

The remaining statements follow. O
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6.4. Graphs of odometers. Here, we apply Proposition 6.8 and Theorem 5.3 to the following
class of examples generalising the odometer action.

Set-up 6.9. Let E be a finite directed graph, and let p: E! — N\ {0} be a function. Define
F=(F° Flr,s)by FO = E° F' ={(e,i): e € E',i € Z/p(e)Z}, r(e,i) = r(e), and s(e, i) = s(e).
We write +, for the group operation on Z/pZ. Let G := E° x Z. We obtain a self-similar action
of G on the 1-graph F* (in the sense of Definition 3.33) by the unique possible extension of the
formulae

(s(e),1) ifi=p(e)—1

(T(e)a 1) > (67 'l) - (672. +I’(e) 1) and (T(e)’ 1) < (6’ 'L) - {(s(e) O) otherwise.

If £°= {v}, E' = {e}, and p(e) = 2, then (G, F’*) is the binary odometer.
Extend p to a functor p: E* — N*. Then O: F* — {(u,1) | p € E*, i € Z/p(u)Z} given by

O((e1,m1)(e2,meg) - - - (€, my)) = (6162 ey ;mjp(el . -ej_l)).

is a bijection. Identifying F* with {(u,?) | p € E*, i € Z/p(n)Z} via ©, and writing |-| : R — Z
for the floor function |z| = max{n € Z: n < z}, we have

(r(), @) > (,m) = (,a+pgym)  and  (r(u),a) < (u,m) = (s(w), [(a+m)/p(p)])

(in the second formula, m is regarded as an element of {0,...p(u) — 1} and the addition a + m is
computed in Z). It is helpful to keep in mind the special case that

ab (1,0) = (ramod p(p)),  and @< (u,0) = [a/p(n)]. (6.14)

Remark 6.10. The self-similar actions of Set-Up 6.9 are faithful self-similar actions as in Defini-
tion 3.30. They are also length-preserving matched pairs as in Subsection 6.1.

We use the symbols A, i, v for paths in E and &, 7, ¢ for paths in F'. So an element of F* might
be written as £ = (u, m). We write p: F* — N\ {0} for the map p(u, m) = p(u).

Lemma 6.11. In the situation of Set-up 6.9, we have Per(uF*?) = uF*? for each v € F° and q €
E°. For each u € E° the map (uo, - - -, pig—1) = Gu®> ((110,0), . .., (itg—1,0)) induces an isomorphism
Kq: ZuE* — Z(G,\uF*?). The functions O, p;: (F*)1™ — 7Z satisfy

1 if 0<i<gq
ﬁ(gq) ifi=q.

Proof. For py,...,p, > 0, the odometer action Od of Z on [[{_(Z/p;Z) is transitive, so the order
of any point under Od is [[;p;. For u € E° and p = (po, ..., He1) € E*u, the action of G,
on {((po, mo), ..., (g, mq)) | mi € Z/p(u;)Z} is conjugate to this odometer with p; = p(u;). So
each O(&, ..., &) = [ToP(&) = D&+ &), we have Per(uF*?) = uF*? and (uo, ..., He1) —
Gu > ((140,0), ..., (fg—1,0)) is a bijection uE*? — G, \ulF™.

For the p;, observe that if ¢ > 1, then writing 9"(§) = (o, ... ,14—1), we have ng - -1,_1 = & - - &,
if i #qand ny---ne—1 =& - &1 if i = ¢q. Hence (6.15) implies that p;(§) = O(£)/0(0i(€)) =1
if i & g, and p(€) = 0(6)/0(0,(6)) = P(&,).

O(fo, Ce ,fq) = p(gogl s fq) CLTT,d pi<§0, Ce 7£q) = { (615)
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It remains to calculate po(§). Since Od is transitive, id x Od is transitive on {(uo, ..., 1y)} X
! 0Z/p(pi)Z. So it suffices to show that & = ((uo,0), (11,0),..., (g, 0)) satisfies po(§) = 1
Applying (6.14), with a = O(§) = p(& - - - &,), gives
O(&) < (10, 0) = [O(&)/p(0) ] = [p(to - 124) /P(t10) ] = plp1 -+~ p1g) = O(0(§)).- O
Lemma 6.12. With Set-up 6.9 let k,: ZuE*? — Z(G,\uF*?) be the isomorphism of Lemma 6.11.
For each0 < i < g, let 0;: E*9TY) — E* be the face map of (4.1). Let Ay 4 be as in Proposition 6.8,
and define Ay g: @uepo ZUuE* ) = @, cpo ZuE* by

q—1

Bua) = (=170 + (~1)8(10) 04 1) (6.16)

=0
Then kg o Ay, = Al,q 0 Kgy1 for all q.
Proof. This follows directly from (6.16) and Lemma 6.11. O

To compute homology for Set-up 6.9, we must compute Al,l(@ueEo ZuE*Z) C @yepo ZuL™.

Lemma 6.13. In the situation of Set-up 6.9, we have ZE* = ZE'+im(Ay ), and im(A, 1) NZE" =
{0}. In particular, ZE* = ZE" & im(Ay ;).
Proof. Since Ay o(ZE®) = 0 and Ay (Z(E° x E*)) = Ay, (Z(E* + E°)) = ZE°, it suffices to show
that ZE=! = ZE" +im(A11|zp>1) and im(Aq 1|zp>1) NZE" = {0}.

Recall that for 4 € EZ' and 1 <4 < ||, the elements pl®~1 € =1 ¢ € E' and plkl ¢ ElH—

are defined implicitly by g = pl® Uil Let A == Ay . To see that ZE>! = ZE'+im(A|zp=1),
it suffices to show that for u € E*\ E°,

P B R
[e (ip(u“"“”)ﬁi) — A(pO =iy 4 spang {A(a, B): |aB| < |ul}- (6.17)
=1

in ZE*. We induct on |pu|. If || = 1 then Zi’ﬂlp(ﬂ[iv\ﬂﬂ),ui = p(s(p))p = p and (6.17) is trivial.
Now suppose that (6.17) holds for |u| < n and fix p € E"™'. Write u = ve with e € E'. Then
e = pmrtl = nttand plintl = plinle and vf = pt for i < n. We calculate (in ZE*):

p=—Av,e)+e+ple)y =—=Av,e) + p(pl" )+ + p(p v, (6.18)
By the inductive hypothesis,

PV € p(umth ((Zp L] l) — AP pm) 4 spang {A(a, B): |af] < n})

C Y (v + spang {A(a, B): [aB| < n}.
i=1
Since p is multiplicative and each v "1 = b7+ we obtain

p(p™ My € 3 p(pl )t + spang {A(a, B): [aB| < n+ 1},

i=1
Substitutirlg this into (6.18) completes the induction, proving the first statement.
For im(A|zp>1) NZE" = {0}, fix (u,v), (n,¢) € B2 x E=! with uv = n¢. We claim that

A, v) = A, ) € spang{A(a, B): [af] < |pv]}. (6.19)
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We first show that if p,v € E* \ E° and uv = ), then

- A -
Apv) € =2+ 3 pAFNYN - spang {A(a, )+ [af] < [Al}. (6.20)
i=1

For this, we calculate, applying (6.17) twice at the second step,
A(p,v) = v — pw + p(v)u
_ |l A A
€ —pw — AWOWI-1 L) +ZP Y () (A(N[O,u—l}“uu) +Zp(u[u|un)uz>

=1
+spang { A, 8): o] < max{|ul, |v]}}.

Since each plHly = (up)Blrl = XBX and since p is multiplicative, this gives

N Al 4 ‘ _ N
Alp,v) € —p + 3 p(AFRNAT 4 — ATy — A(p(v) =1l

i=1

+spang { A, 8): [af] < max{|ul, |v]}}.

Since |p|,|v| < |A|, we obtain (6.20). Since the terms —A + S p(ABR-U)\i in the right-hand
side of (6.20) depend only on the product pv, we obtain (6.19).
Now, we suppose that im(Aj|zE>1) N ZE' # {0} and derive a contradiction. Let | € N

be minimal such that there exists a € spany{(y,v): |uv| < I} with A(a) € ZE'\ {0}. Write
a= Y a,,(p,v). For each (p,v) such that |puv| =1 and 0 # a,, € Z, Equation (6.19) gives

A (o (0 ) ) = 1)) ) € spans{A(a, 9): o] < 1}
Hence,
d=a+ > au, (@ (@) = (u,v))
lpv|=l
satisfies A( ) — A(a') e spany{A(a,3): |af| < I}. Fix b € spanz{(a,ﬂ): laB| < 1} such that
Aa) = A( Y+ A(b) = A +b). Let a” == d’ + b; by construction, a” € spany{(u, v): |pv| < I}.

Write o’ = > aj, (¢, v). Then a;,, = 0 for all (y,v) such that |uv| = [ and [pu| > 1. Write
b=>0bu.,(p,v). Then b,, = 0 for all p, v with |uv| = 1. Hence a;,, = 0 whenever |uv| = [ and

| > 1. We have A(a”) = A(a) € ZE* \ {0}, and since [ is minimal there exist v € E"! and
e € E'r(v) such that a, # 0. We have

A= D ape— D det > pT)dl, (6.21)

acE*r(e) n¢=ev TEs(e)E*

By construction of a”, the only nonzero term in (6.21) is —ag, in the middle sum, so
A(a”)el/ = _a'/e,,y 7é 07

which contradicts that A(a”) € ZE. O
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Define M, € Mpo g1 (Z) by Ms(v,e) = 0y5(c), regarded as a group homomorphism from ZE" to
ZE". Similarly, define M, € Mgo 1 (Z) by M,(v,e) = dy,(c). Let P € Mpi(Z) be the diagonal
matrix P(e, f) = 0. ¢p(e). Finally, define M: ZE* — ZE° by

M = M,P — M, (6.22)
In matrix form, M € Mpgo p1(Z) is given by

p(e) if v =r(e) and s(e) # r(e)
— if v =s(e) and s(e) # r(e

M('Uv 6) = p(e)évﬂ’(e) - 51},5(6) - p(1€) 1 if v — TE@; _ j(@)( ) # ( )
0 if v & {r(e),s(e)}.

Proposition 6.14. With Set-up 6.9, let M: ZE' — ZE° be the homomorphism (6.22). The
spectral sequence of Corollary 5.18 satisfies Ef?Q = 0 whenever max{i,j} > 2,

EW = H(E), By’ = ker(M), EJW* = Ho(F), and EVy* = coker(M).

Proof. Lemma 6.11 gives Per((F*)?) = (F*)9, so Proposition 6.8 implies that E*;* is isomorphic
to the homology of the chain complex (G}ueEo Z(G, \uF™*), Ap,.) for p = 0,1. Lemma 6.12 gives
isomorphisms k,: E£* — G\F*? intertwining the Ay, with the categorical-homology boundary
.. o . vh,2

maps for F, giving the descriptions of Fj,”.

Lemma 6.12 yields an isomorphism k&, : (@ueEo ZuE™e, Al,-) — (@ueEo Z(G \uF™**), Al,-) of
chain complexes induced by the k,. So Eflzz = H.(@ueEo ZuE™®, 51,.).

We have Ay o(s) = p(u)r() — s(u), giving EYh? = ZE® spang {p(u)r (i) — s(u): 1 € E*}. Fix
w € E*. The telescoping identity

||
p()r(u) = s(p) = 2 p(u™ .. ) (p(at)r () = s(u')),

gives spang {p(u)r(n) —s(u): u € E*} C spang{p(e)r(e) —s(e): e € E'}. The reverse containment
is trivial. Since each p(e)r(e) — s(e) = Me, we deduce that Efféz = coker(M).

It remains to calculate Eﬂz =~ ker(Ayo)/im(Ay;). Clearly, (ker(Ayo) NZEY) 4+ im(A;;) C
ker(Ay ). Conversely, if a € ker(A; ), then Lemma 6.13 says that a = o/ + = for some o € ZE"
and z € im(A1 ;). Then A o(a) = Ayg(a —z) =0, so @’ € ker(Ay) NZE". Hence,

ker(Arg)  (ker(A1g) NZEY) +im(Ar,)  ker(Ay ) NZE! N
— = —— == = ker(Ayozp1)-
1m(A171) 1m(A171) 1m(A171) N ZEl
The restriction of Ay to ZE" is M, so EffiQ = ker(M). O

We obtain a computation of the homology of matched pairs (G, F*) as in Set-up 6.9.
Theorem 6.15. In the situation of Set-up 6.9, with M € Mpo p1(Z) as in (6.22),
H(G, F*) = Hy(F), and HX(G, F*) = ker(M),
and there is a short exact sequence

0 — H{(F) — HY(G,F*) — coker(M) — 0.
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Proof. This follows immediately from Lemma 6.3 and Proposition 6.14. OJ
Given a finite directed graph F, we define x(FE) := |E°| — |E'|, the Euler characteristic of E.

Corollary 6.16. In the situation of Set-up 6.9, suppose that vE*w # @ for all v,w € E°, and
that E' #+ &.

(i) If p(e) = 1 for all e € E, then
HY G, F) =2z,  HYG F)=2XP and  HP(G F) =z,

(ii) If p(e) > 1 for some e € E', then coker(M) is a finite cyclic group,
HY(G, F) 27 and  HY(G,F*) =7 x®)
and there is a short exact sequence

0 — Z'=XE) — H¥(G, F*) — coker(M) — 0;

if ged {p(,u) —pv): p,v € E* s(p) = s(v) and r(u) = 7’(1/)} =1, then coker(M) = 0 and
HX(G, F*) = 7 x(E),

Proof. By [Mas91, p.194] (immediately after Theorem 3.4), Hy(E) is the free abelian group gen-
erated by the connected components of E. Since vE*w # & for all v,w € E°, this is a singleton.
So Hy(FE) = 7. This and [Mas91, Theorem 3.4] give H,(E) = Z'~X(¥), We must compute ker(M)
and coker(M).

(i) Suppose that p(e) =1 for all E. Lemma 6.11 gives p; = 1 for all i, and A, = A, for all ¢.
So ker(M) = E{Y? = EYV? = H(E) 22X and coker(M) = EY? =2 EY® & Hy(E) 2 Z. In
particular, Coker(M ) is free abelian, so the extension

0 — Hi(E) — HY(G,F*) — coker(M) — 0

of Theorem 6.15 splits, giving the desired formulae for H}*(G, F™*).

(ii) Now suppose that p(e) > 1 for some e. By assumption, there exists p € s(e)E*r(e), and
plep) = p(e)p(p) > 1. For v € E*, we have p(v)r(v) — s(v) = SML p@t M (p( ) r (V) —
s(v')) € im(M). In particular, (p(ep) —1)r(e) = p(ep)r(ep) —s(ep) € im(M), and so r(e)+im(M)
has finite order in coker(M).

Fix w € E°. By assumption, there exists v € r(e)E*w and so w + im(M) = w + p(v)r(v) —
s(v) +im(M) = p(u)r(e) + im(M). So coker(M) = Zr(e) + im(M) is a finite cyclic group.
Hence, rank(im(M)) = rank(ZE°) = |E°|, and Rank-Nullity for Z-modules gives rank(ker(M)) =
rank(ZFE') — rank(ZE°). Since ker(M) is a subgroup of a free abelian group, it is free abelian, so
ker(M) = Z7X(F) The formulae for Hy and H, and the exact sequence involving H; now follow
from Theorem 6.15.

Finally, suppose that ged {p( )—pv): pve E* s(u) =s(v) and r(p) = T(I/)} = 1. As above,
a = r(e) + im(M) generates coker(M). So it suffices to show that O(a) divides p(u) — p(v)
whenever s(u) = s(v) and 7(u) = r(v). Fix v,w € E° and p,v € vE*w. We have (p(u) —
p())v = (p(1)r(1)  s(1)) — (p()r(v) — 5(v) € Im(M). Fix @ € vEr(c). Then r(e) +im(M) =
() + (p(a)r (o) = (@) + (A1) = pla)o - (). I pasticua, (1) —plo))rle) +ima1) =
p(0) (p(1) — p())o -+ im(2) = 0 + (). So O(v + im(M) divides p() — ()

O
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Remark 6.17. The situation when p(e) = 1 for all e in Corollary 6.16 boils down to G <t F* = Zx E*,
so Corollary 6.16(i) is a nice reality check: it says that H;*(G, F*) = @ H,(Z) ® H;(E"), in
the spirit of the usual Kiinneth formula.

i+j=p

Example 6.18. Suppose that E is the directed graph with a single vertex v and a single edge
e, so x(F) = 0. Fix p(e) € N\ {0} and form the matched pair (G, F*) of Set-up 6.9. Then
HX(G,F*) = Hy(F) = Z. The map M: ZE' — ZE° is x(p(e) — 1), so we obtain an exact
sequence

0 — Z — HY(G,F*) — Z/(ple) — 1)Z — 0.

If p(e) = 1, then HY(G, F*) = 7Z* and HY(G, F*) = Z; if p(e) = 2 (the binary odometer), then
HY¥(G, F*) =2 Z and HX(G, F*) = 0.

For p(e) > 2 the group cohomology H*(Z/(p(e)—1)Z;Z) = Z/(p(e) — 1)Z, so the exact sequence
in Corollary 6.16 (ii) does not completely determine H(G, F™*).

7. TWISTED C*-ALGEBRAS OF SELF-SIMILAR GROUPOID ACTIONS ON k-GRAPHS

We give two constructions of a twisted C*-algebra from a self-similar action of a groupoid on a
k-graph as in Definition 3.33. This is a matched pair consisting of a groupoid and a k-graph in
which the left action preserves the degree map. Recall from Proposition 3.32 that these generalise
the faithful self-similar actions of groupoids on graphs and k-graphs of [LRRW18, ABRW19]. Our
self-similar actions are the examples of [LawV22] in which the generalised higher-rank k-graphs
are k-graphs.

Our first construction of such a C*-algebra is twisted by a normalised 2-cocycle in C%,(G, A; T)
and the second is twisted by a normalised 2-cocycle in C2(G, A; T). We show that cohomologous
cocycles yield isomorphic twisted C*-algebras, and that our two constructions are compatible via
the isomorphism of cohomology groups of Corollary 5.4. So all possible twisted C*-algebras arise
via total 2-cycles.

We first study C*-algebras twisted by categorical cocycles, and establish some elementary struc-
ture theory, including a gauge-invariant uniqueness theorem.

Recall from [KP00] that a k-graph A is row-finite and has no sources if 0 < |[vA"| < oo for
all v € A° and n € N*. Following [RS05] (see also [RSY04, Remark 2.3]), if A is a k-graph and
w, v € A we define

MCE(p, v) == pA N vA 0 AMWVIE),

Elements of MCE(u, v) are called minimal common extensions of p and v.
We adopt the usual conventions from the theory of C*-algebras that homomorphisms are *-
homomorphisms, and that ideals are closed 2-sided ideals.

7.1. Twists by categorical cocycles. Given a normalised categorical 2-cocycle c: C? — T and
a subcategory C' C C, we write ¢ for the restriction of ¢ to (C')? C C2. Given a self similar action
of a groupoid G on a k-graph A, we regard G and A as subsets of G 1 A; so g\ = (g<A) (g A) for
(g,A\) € GxA.

Definition 7.1 (cf. [Yus23, ABRW19]). Let (G,A) be a self-similar action of a groupoid on a
row-finite k-graph with no sources. Let c¢: (G >1 A)> — T be a normalised categorical 2-cocycle. A
Toeplitz—Cuntz—Krieger (G, \; ¢)-family in a C*-algebra A is a function ¢: G ><1 A — A, such that

(TCK1) tcty = ds(¢)r(m (¢, m)tey for all (¢,n) € (G A)*2,
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(TCK2) ty¢) = tite forall ( € G A,
(TCK3) for all p,v € A we have t,t7t,t5 = Y emcr(u) EAr-
We call t a Cuntz—Krieger (G, A\; ¢)-family if, in addition
(CK) t, = Scoan tat} for all v € A% and n € NF.
We write C*(t) .= C*({t; | ( € G A}) C A.

Remark 7.2. Relation (TCK2) for ¢ = v € A is tit, = t,, so t, is a projection. Now (TCK2) for
any (¢ implies that ¢; is a partial isometry.

Relation (TCK1) implies that the t,, for v € A° are mutually orthogonal [KP00, Re-
marks 1.6(vi)]. So (TCKI1)-(TCK3) say that {ty: A\ € A} is a Toeplitz—Cuntz—Krieger (A, c)-
family as in [SWW14], and so induces a homomorphism ¢} : TC*(A, ¢) — A, which descends to a
homomorphism ¢ : C*(A,c) — A if t is a Cuntz—Krieger (G, A; ¢)-family.

If u,v € A satisty d(p) = d(v), then MCE(u, v) = {u} if p = v and @ otherwise (see [SWW14,
Lemma 3.2]). So (TCK3) gives t,tit,t; = d,,t,t;. Since c is normalised, (TCK1) implies that
tru by = tu, so tuty, <ty for all p € A. Hence, as in [SWW14, Remark 3.4], every Toeplitz—
Cuntz—Krieger (G, A; ¢)-family satisfies
(TCK4) t, > X yeconn tats for all v € A® and n € N*.

Relation (TCK1) for g € G gives tyty-1 = c(g, g ")ty (g), 50 tyc(g, g~ )ty—1 = ty(g). Uniqueness of
quasi-inverses in an inverse semigroup then forces c(g, g=1)t,~1 = ty,80 g~ tyisa twisted unitary
representation of G & la [Ren80], and so induces a homomorphism ¢f;: C*(G, c) — A.

The following standard arguments [Spe20, SWW14] show that every (G, A; ¢) admits a Toeplitz—
Cuntz—Krieger-family of nonzero partial isometries.

Example 7.3. By Example 3.16 and left cancellativity of k-graphs, G 0 A is left cancellative.
Hence, for each ( € G 1 A there is a partial isometry, L; € B({*(G > A)) such that Lee, =
ds(¢)r(mc(C,m)ecy for all n € G >a A. Routine calculations show that this determines a Toeplitz—
Cuntz—Krieger (G, A; c)-family L: G 1 A — B(£*(G a1 A)).

We claim that {L,L,L;: u,v € A, g € gj((;‘))} is linearly independent. To see this fix a linear
combination a = 3, ,, @4, L, LgL}; with at least one nonzero coefficient. Fix (u, g,v) such that
aug0 7 0 and a, g ,» = 0 whenever d(v') < d(v). Then L},e, = 0 whenever a,y 4, # 0 and v/ # v.
Hence, |lal| = |(aey | eug)| = |apg,| # 0.

Proposition 7.4. Let (G,A) be a self-similar action of a groupoid on a row-finite k-graph with
no sources. Let c: (G a1 A)?> — T be a normalised categorical 2-cocycle. There is a C*-algebra
TC*(G, A; ) generated by a Toeplitz—Cuntz—Krieger (G, A; ¢)-family t that is universal for Toeplitz—
Cuntz—Krieger (G, A; ¢)-families: if T is a Toeplitz—Cuntz—Krieger (G, A; ¢)-family, then there is a
unique homomorphism 7™ : TC*(G, A; ¢) — C*(T) such that T = 77 ot.

Consider the ideal I of TC*(G,A;c) generated by {t, — > ycoan tals | v € A°}. Then s: ( —
tc + 1 is a Cuntz—Krieger (G, A; c)-family in C*(G,A;¢) = TC*(G,A;¢)/I, and is universal for
Cuntz—Krieger (G, A; c)-families: if S is a Cuntz—Krieger (G, A\; ¢)-family, then there is a unique
homomorphism m: C*(G, A; ¢) — C*(S) such that S = 7 o s.

To prove Proposition 7.4, we follow the standard construction of [Bla85, Rae05, Lor10]. We first
need the following technical lemma.
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Lemma 7.5. Let (G,A) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. Let c: (G < A)2 T be a normalised categorical 2-cocycle. Fix (u,g,v) and (n,h,() in
AxGx A, and for each (c, B) such that vae = nfs € MCE(v, n), define

p) =

w(a, c(v, a)e(n, B)e(g, a)e(h™", )e(h=1, B) c(g < e, g > )
x e(h™' e B, < B)e(p, g > a)e(C, h~1o B) (7.1)
x c(h=tap, (bt ap)e(gaa, (k™ aB)™).
Then for any Toeplitz—Cuntz—Krieger (G, A; ¢)-family T', we have

TT,T;T, T, T = > Wa, 8T pu(goa) T(gaa)(h=148) 1 T (h-15)
va=nLFeMCE(v,n)

Proof. Relation (TCK3) implies that each

T, = TALTT,THT, = Y. TT.TT,
va=nBeMCE(v,n)

For fixed (v, 8) in the above sum, relations (TCK1) and then (TCK2) give
T, TT, = c(v, a)e(n, B LTI, T, = c(v,a)e(n, B)TaT}.
Fix va = nf € MCE(v,n). Remark 7.2 gives T3 T, T} = c(h™', h)T;T; . T;}. We have

T,T, = c(g,0)Tga = (g, ) Tigoa)(gaa) = (g, a)c(g> o, g 9 0)TgeaT e,
and similarly,
T = T Ble(h™ o B, h ™ 4 B)Tfsgs Ty
We have
T Tgea = c(t, 9> )Ty (goa) and Ty-1u6TE = (G R e B) T 10
Finally,

TgDaTh 1ap — C(h' Tq 6 (h' lg 6) 1) gbaT(h—lqﬁ)—l
= C(h L q 6, (h L4 6) 1)C(g >, (h_l < 6)_1)T(gl>a)(h*1<15)*1-
Putting all of these identities together gives

T, T = > c(v, a)e(n, B)T,TT T T T
va=nBeMCE(v,n)
= Z waﬂTu(gDa)T(g<1a)(h’1<1ﬁ)’1Tg(hflbﬂ)' O

va=nBEMCE(v,n)

Corollary 7.6 (cf. [LRRW18, Proposition 4.5]). Let (G, A) be a self-similar action of a groupoid on
a row-finite k-graph with no sources, and let c: (G 1 A)*> — T be a normalised categorical 2-cocycle.
If T is a Toeplitz—Cuntz—Krieger (G, A; c)-family, then C*(T') = span{T,T,T, : (i, g,v) € AxGxA}.

Proof. The set X := span{7,T,T;: (1,g,v)} is a closed subspace of C*(T). It is closed under
adjoints since T, 1,7, = c(g,97 )T, T, 1,;, and Lemma 7.5 shows that it is closed under multi-
plication, so X is a C*-subalgebra of C*(T'). Fix ( € G < A. Proposition 3.13 gives a unique
factorisation ¢ = pg with 4 € A and g € G. So T = (i, 9)T, T,T5, € X. So X contains the
generators of C*(T') giving X = C*(T). O
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Proof of Proposition 7.4. Consider the vector space V = C.(A * G % A) of finitely supported
complex-valued functions on A x G * A, which has basis the indicator functions 6, .
These 0, 4, are linearly independent, so there is a conjugate-linear map *: V' — V such that

O g0 = (9,97 )00, (7.2)
and there is a bilinear map -: V' x V — V such that, for the scalars w, g defined in (7.1),

Ongibone = Do Wasluigoe) (gea)(h 98 ch1o8): (7.3)
va=nBeEMCE(v,n)

In the Toeplitz—Cuntz—Krieger (G, A; ¢)-family L of Example 7.3, the L, LyL;, are linearly in-
dependent, so there is a linear injection ¢r: V. — B((*(G 1 A)) satistying ¢1,(0,.4.,) = Lu.L,L5.
Lemma 7.5 and bilinearity of multiplication in B(¢*(G < A)) shows that ¢, intertwines (7.3) with
multiplication. Remark 7.2 shows that it carries (7.2) to the adjoint in B(£*(G < A)).

Since B(¢*(G 1 A) is a *-algebra, we deduce that the operations we have defined on V satisfy
the *-algebra axioms, so V' is a *-algebra. The 0, ,, are linearly independent, so for any Toeplitz—
Cuntz—Krieger (G, A; ¢)-family T there is a linear map ¢r: V' — span{71,, 1,71, : (1, g,v) € AxGxA}
such that ¢ (0, 4,) = 1,T,7,. Lemma 7.5 shows that ¢p is a homomorphism. The T; are partial
isometries, so for a = >, ) Gugubug, € V, we have [pr(a)|| < X 4. l0ug.|. The map
p:V —[0,00), given by

p(a) = sup{|j¢r(a)|: T is a Toeplitz-Cuntz-Krieger (G, A; ¢)-family}

is a pre-C*-seminorm. Quotienting by N = ker p and completing gives a C*-algebra TC*(G, A; ¢).

The map t: pug — c(, 9)0,,g.5(9) + N is a Toeplitz—Cuntz—Krieger (G, A; ¢)-family in 7TC*(G, A; ¢)
because N contains the obstructions to relations (TCK1)-(TCK3). This ¢ is universal: for any
family 7" and any a € V, we have ||¢or(a)|| < |l¢i(a)|l, so @7 factors through a norm-decreasing
homomorphism from ¢;(V) to ¢7r(V), which extends to a homomorphism 77 : TC*(A,G;c) —
C*(T') of C*-algebras by continuity.

By definition of I, the map s is a Cuntz—Krieger (G, A; ¢)-family. Given any Cuntz—Krieger
(G, A; ¢)-family S, the kernel of the homomorphism 7%: TC*(A,G;c) — C*(S) contains I, so 7°
descends to a homomorphism C*(A, G;c) — C*(S). O

Since A and G are subcategories of G 1 A, if ¢: (A x G)? — T is a 2-cocycle then |52 and c|ge
are 2-cocycles on A and G, which we continue to denote by c.

Our next steps are to show that if G is amenable, then 15: C*(G,¢) — TC*(G,A;¢) from
Remark 7.2 is always injective, and follow Yusnitha’s analysis [Yus23] to see that her joint-
faithfulness condition implies that :&: C*(G,c) — C*(G,A;c) is faithful. We also show that
i TC* (A e) = TC* (G, A;¢) and 15 : C*(A, ¢) — C*(G, A; ¢) are always injective.

If (G,A) is a self-similar action of a groupoid on a row-finite k-graph with no sources, then the
degree map dy : A — NF determines a function dge : G > A — N¥ by dgpan (11, 9) = da(p) for all
(1, 9) € AxG = Gra A, We will just write d for both dj and dgs, unless the subscript is needed
for clarity. Since d(g> u) = d(u) for all (g, ) € G x A, for each ((u, g), (v, h)) € (G 1 A)?,

d((1,9)(v, b)) = d(u(g>v), (g av)h) = d(u(g>v)) = d(uv) = d(p, g) + d(v, h).

Sod:GraA — NFis a functor.
For each z € T*, the function 7,(t): G 1 A — TC*(G, A;c) defined by 7.(t)(¢) = 249t is a
Toeplitz—Cuntz—Krieger (G, A; ¢)-family. By the universal property, v, extends to an endomorphism
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of TC*(G, A; ¢). Since 7,07,(S¢c) = Vaw(se) forall ¢ € G pa A, this v is an action by automorphisms.
An g/3-argument shows that it is strongly continuous. We call v: T* — Aut(7C*(G, A;c)) the
gauge action, and write TC*(G, A;c)? for the fixed-point algebra {a € TC*(G,A;¢) | v.(a) =
a for all z € T}.

The same argument yields a strongly continuous action, also denoted v and called the gauge
action, of T on C*(G, A; ¢) such that 7,(s¢) = 249, for all ¢, and we likewise write C*(G, A; ¢)?
for the resulting fixed-point algebra.

Proposition 7.7 (cf. [Yus23, Proposition 3.6]). Let (G, A) be a self-similar action of a groupoid on
a row-finite k-graph with no sources, and let c: (G 1 A)*> — T be a normalised categorical 2-cocycle.
The generators t; of TC*(G,A;c) and s¢ of C*(G,A;c) are all nonzero. The homomorphisms
o TCH(A ¢) = TC*(G,A;¢) and o : C*(A,¢) = C*(G,A;¢) are injective. If G is amenable,
then if: C*(G,c) — TC*(G, A;c) is injective. If, in addition, for every v € A° and every n € N¥,
there exists A € vA™ such that g — (g< X, g> \) is injective on G, then 1f: C*(G,c) = C*(G, A; c)
15 injective.

Proof. Let L: G > A — B(£*(G 1 A)) be the Toeplitz—Cuntz—Krieger (G, A; ¢)-family of Exam-
ple 7.3. Since the L, are nonzero, the universal property of 7C*(G, A;c) implies that the ¢, are
nonzero. As each ||t¢||* = [|titc]| = |[tso) |, the t¢ are all nonzero. For each v € A and n € N, we
have (L, — X conn LuL})ey = €, # 0, so [SWW14, Theorem 3.15] implies that IT" o /}y is injective,
and hence (Y, itself is injective.

To see that the s; are all nonzero, we follow the argument of [Yus23]. For each v € A° and
n € NF| the projection A, , = L, — Sscoan LaL} vanishes on span{e,,: d(A) > n}. A direct
calculation using that d(g> \) = d()\) for all A, shows that LyLyLi Ay oLy, LiLiecy = 0 whenever
d(¢) > d(n) and d(¢)—d(n)+d(v) > n. In particular, for a € span{LxLy L} Ay, L, Ly Ly A, i, v,m €

A g,h € G,ne N ve A%, regarding N as a directed set, lim,,cyx aspanfec, : CeAn’geg}H =0. An
approximation argument gives
. L
,}lerélk 7 (a) [spaniec, - CeAn7g€g}H =0 forallaecl. (7.4)
Fix v € A%, n € N* and ¢ € vA™. Then ||Lyec|| = |lec|| = 1, and so
. L o
7}5{]1}6 T (tv)|m~{e<g: CEA",gEQ}H =1

Hence, t, & I, so s, = t, + I # 0. Now by (TCK2), each ||s¢||> = |ls¢s{ll = [lsso)ll > 0. The
homomorphism ¢} intertwines the gauge actions of T* on C*(A,c) and C*(G, A;c), so the gauge-
invariant uniqueness theorem [KPS15, Corollary 7.7] implies that ¢} is injective.

The subspace (*(G) C ¢*(G < A) is invariant for 75 : C*(G, ¢) — B(¢£*(G 1 A)), and the reduction
of m¥ to (2(G) is the left regular representation A of C*(G, ¢). Since G is amenable, \ is faithful, so
m§ = w0k is injective, and hence i} is injective.

Finally, fix v € A% n € N*¥, and A\ € A such that g — (g> A, g<\) is injective on gjj((j; Again
following Yusnitha [Yus23, Proposition 3.6], the space H, \ = span{eg. 4egr} is invariant for
{L,: g € G’}, and ey — c(g, \)e, induces an isomorphism U: H,, , — ¢*(G?) that intertwines the
reduction of WL‘C*(g57C) with the regular representation. Since G is amenable, so is G; and so the
reduction of ¢+ gy ) t0 Hp x is faithful. So, fora € C*(GY, ¢), we have HWL(a)|Spm{e<g: CeAnyeg}H =

al| for all n. So by (7.4), a € I, so ({, is injective on each C*(GY, ¢).
g v
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Fix a subset V' C G° that intersects each G-orbit exactly once. Then Py =3,y 8, € MC*(G, ¢)
is a full projection, and PyC*(G,c)Py = @,er C*(GY, ¢). Since ¢ is injective on this full corner,
it is injective on all of C*(G, ¢). O

Remark 7.8. Let (G, A) be a self-similar action of an amenable groupoid on a row-finite k-graph
with no sources, and let ¢ : (G <1 A)> — T be a normalised categorical 2-cocycle. Proposition 7.7
shows that TC*(G, A;c) is generated copies of TC*(A;c¢) and C*(G,c). It would be interesting
to determine when 7C*(G, A;c) is a C*-blend of these two subalgebras in the sense of [Exel3];
or when C*(G, A;c) is a blend of C*(A, ¢) and C*(G, ¢) (the corresponding result for Zappa—Szép
products of Fell bundles over groupoids appears in [DL23, Theorem 5.4]). For example, it seems
likely that a contracting condition like that of [LRRW18, Section 9] or [Nek05, Section 2.11] implies
that each spanning element s,s,s;, of C*(G, A; c) belongs to Span{s.sss, | @, 8 € A,g € G}. But
we do not pursue this question here.

We now prove a gauge-invariant uniqueness theorem for C*(G, A; ¢). This by-now ubiquitous tool
in the study of C*-algebras of graphs and related objects goes back to [aHR97]. Our argument in
the context of twisted C*-algebras of self-similar actions on k-graphs generalises those of [LRRW18,
ABRW19, Yus23] for untwisted actions on graphs and k-graphs; our analysis of the core is heavily
based on Yusnitha’s [Yus23].

Proposition 7.9 (cf. [Yus23, Lemma 4.10]). Let (G,A) be a self-similar groupoid action on a
row-finite k-graph with no sources. Let c: (G <1 A)*> — T be a normalised categorical 2-cocycle.
Then

C*(G, ;)Y = span {susg cpv €N d(p) =dv),g € QS(”}

s(v)
Let S be a Cuntz—Krieger (A, G; c)-family, and suppose that ©°: C*(G, A;c) — C*(S) is injective
on 15(C*(G,c)). Then ©° is injective on C*(G, A;c)7.

Proof. Let ®: C*(G,A;¢) — C*(G, A; ¢)" be the faithful conditional expectation satisfying ®(a) =
Jrx v2(a) dz [Rae05, Proposition 3.2]. Then ®(s,5455) = 0a(u),aw)SuSq5,, and so

C*(G,A\; ) = ®(C*(G,A\;0)) = q)(span {sﬂsg v €N gE Qj((ff })
= Spam {8,551 v € A d() = d(v), g € Gl .

For fixed n € N,
F,, := span {susg v eN g€ G }

s(v)

is a C*-subalgebra of C*(G, A;c)?. If m,n € N¥ v € A™, and g € QS(V then
SuSgSs = SuSg >, Sesish =Y. (g, 7)c(g> T, g <AT)SSgorSgarSeS,
TEs(g)A™ TEs(g)A™
= Z C(Mang)c(Va T)C(g,T)C(gDT,g <]T)Sugl>’r$g<17'5z7— S Fm+n~
TEs(g)A"

So Fy, C Fyuyn and C*(G, A;¢)” = U, F,.. So to see that 7° is injective on C*(G, A; )7, it suffices
to show that it is injective, and hence isometric, on each F,.

Fix n € N*. Consider the equivalence relation ~ on A™ such that A\ ~ p if and only if gj&’ #+ .
Let K C A™ be a set of representatives of A" /~. For A € A", there exists p € K with p ~ A, say

g € gj((:) SO 5\8y = S\UgS M(susu)suu;s,\. Since Y \can SAS3 is an approximate identity for F,, it



HOMOLOGY FOR SELF-SIMILAR ACTIONS AND ZAPPA-SZEP PRODUCTS 52

follows that Py := 3" ,cx sas} is a full projection in MF,. So it suffices to show that 7° is injective
on PKFnPK

For distinct A\, € K we have sysyFis,s;, = {0} by definition of ~, and so PFiP, =
Dirck SrsyEFrsasy. So it suffices to show that 7% is injective on each SxSxFisasy.

Fix A € K, and let v := s(\). Since the s,s7, for u € A", are mutually orthogonal, sxs3Fisasy =
span{sysysy: g € GU'}. Conjugation by sy is an isomorphism of this subalgebra onto span{s,: g €
Gv}. Similarly, span{S\S,S5: g € G°} = span{S,: g € G'} via conjugation by Sy. Since 79(sy) =
Sy, and 77 is injective on span{s,: g € G¥}, the result follows. O

We obtain a version of an Huef and Raeburn’s gauge-invariant uniqueness theorem [aHR97].

Corollary 7.10 (The Gauge-Invariant Uniqueness Theorem). Let (G, A) be a self-similar action
of a groupoid on a row-finite k graph with no sources, and let c: (G <1 A)*> — T be a normalised
categorical 2-cocycle. Let S be a Cuntz—Krieger (G, A;c) family in a C*-algebra A. If there is a
strongly-continuous action 3: TF — Aut(A) such that B.(S¢) = 249s; for all ( € G A, and if
7 C*(G, A\ ¢) — C*(S) is injective on 1§5(C*(G, ¢)), then ©° is injective.

Proof. The assumptions combined with Proposition 7.9 show that 7 is injective on C*(G, A; ¢)?.
Define I': A — A by I'(a) = [ B.(a) dz. Since 3,07 = 7% 0+, for all 2z, we have 7°0® =T o7”,
and then [SWW14, Lemma 3.14] shows that 7 is injective. O

We now show that the isomorphism class of the twisted C*-algebra of a self-similar action of
a groupoid on a k-graph depends only on the cohomology class of the twisting 2-cocycle. The
argument is standard; see, for example, [KPS15, Proposition 5.6].

Proposition 7.11. Let (G, A) be a self-similar action on a row-finite k-graph with no sources, and
let ¢1,co: (G 1 A)? — T be normalised categorical 2-cocycles. Suppose that b: G A — T is a
categorical 1-cochain such that d' (b)c; = cy. Fori = 1,2 let t' be the universal Toeplitz—Cuntz—
Krieger family in TC*(G, A; ¢;). Then there is an isomorphism 0,: TC* (G, \;co) — TC*(G, A, ¢1)
such that 0,(t7) = b(Q)t} for all ¢ € G v A, This isomorphism descends to an isomorphism
Op: C*(G, \;co) = C*(G, A, c1).

Proof. Define bt: Ga A — TC*(G, A; 1) by (bt)c = b(Q)t;. For (¢, n) € (G > A)?,

(bt)c (bt) = b(OEb(m)t, = b(Cm)d" (D)(C. m)er (G mite, = ca(Cm) (bt) ey,
So bt satisfies (TCK1). It also satisfies (TCK2) and (TCK3), and satisfies (CK) if and only if ¢

does, because the factors of b(¢) and b(¢) in these relations cancel.

The universal property of TC*(G, A; ¢2) gives a homomorphism 0y,: TC*(G, A;c0) — TC*(G, A, 1)
such that 6,(t7) = b(¢)t; for all ¢ € G a A, which descends to a homomorphism O,: C*(G, \; ¢3) —
C*(G,A,c1). Since d'(b)cy = ¢1, there is a corresponding homomorphism 6;: TC*(G, A;c;) —
TC*(G, A, ca) such that 6;(t7) = @té, which also descends to Cuntz—Krieger algebras. Since
0y 0 6> and ¢ o 0, fix the generators ¢;, they are the identity homomorphisms, and this descends to

Cuntz—Krieger algebras as well. O

7.2. Twists by total 2-cocycles. We describe the twisted C*-algebra of a self-similar action on
k-graph with respect to a total 2-cocycle, and show that we obtain the same class of C*-algebras
as for categorical cohomology.
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Definition 7.12. Let (G, A) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. A function p: GZ2U (G x A) UA? — T is a normalised total T-valued 2-cocycle on (G, A), if

P20 = @lg2, P1,1 = @[gsa and @o = @[> satisfy
(i) p20: G* — T is a normalised T-valued 2-cocycle in the sense of [Ren80];

(ii) @o2: A* = T is a normalised T-valued categorical 2-cocycle in the sense of [KPS15]; and
(iii) ¢1.1(h, ) =1 whenever h € G° or A € A° and for (g,h, A\, 1) € G+ G* A x A,

e11(h <X, 1)1 (R, M) (B, A)po2(A, 1) poz(h> (A, p) =1 and

©2,0((9, h) <A )p2,0(9, 1) p11(h, N)p11(gh, N)p1a(g, b A) = 1.

Remark 7.13. In defining a normalised total T-valued 2-cocycle we have just written out explicitly
what it means for ¢ to be a cocycle in C2,(G,A;T). This can be verified by computing what
it means for a cochain to be in the kernel d%,: C%,.(G,A;T) — C3..(G,A;T) which satisfies
d%.. 0 @ = @ o dy°t, where d;°" is from Section 4.4.

Definition 7.14. Let (G, A) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. Fix a normalised cocycle ¢ € C%, (G, A; T) and let A be a C*-algebra. A pair of functions
t: A > Aand w: G — Ais a Toeplitz p-pair if:

(T1) tis a Toeplitz—Cuntz—Krieger (A, pg2)-family in the sense of [SWW14],

(T2) w is a unitary representation of (G, ¢2), and

(T3) gty = @11(9, Ntgatwga for all (g, A) € G * A.

We call (w,t) a Cuntz—Krieger o-pair if t is a Cuntz-Krieger (A, ¢go)-family.

With U, : C2(G, A) — C*(G, A) as in Subsection 5.1.3, define ¥*: C%.. (G, A; T) — C2(G, A; T)

by U* = ¢ o ¥;. Then ¥* induces an isomorphism on cohomology. On 2-cochains,

U2(0)(Ag, ph) = ©2,0(g <, h)p1.1(g, 11)po2 (A, g > )

for all (A\,g,,h) EAxGxAxG.
We show that TC*(G, A; ¥?(¢)) is universal for Toeplitz @-pairs, and C*(G, A; ¥?(p)) is universal
for Cuntz—Krieger ¢-pairs.

Theorem 7.15. Let (G, A) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. Fiz a normalised cocycle o € C3 (G, \; T) and let ¢ .= ¥?(p) € CZ(G, \; T).

(i) Let t: G @ A — TC*(G,A;¢) be the universal Toeplitz—Cuntz—Krieger (G, A; ¢)-family.
There is a Toeplitz -pair t,vw in TC*(G, A;c) given by t = t|y and vo = t|g. Moreover
TC*(G, A;c) is generated by the ranges of t and v, and is universal in the sense that given
any Toeplitz p-pair ¥, w’ in a C*-algebra A, there is a homomorphism p: TC*(G, A;¢) — A
such that pot=1t and poto =t'.

(ii) Let s: Gxa A — C*(G, A; ¢) be the universal Cuntz—Krieger (G, A; ¢)-family. Then there is a
Cuntz—Krieger p-pair s,u in C*(G, A; ¢) given by s = s|y and u = s|g. Moreover C*(G, A; c)
is generated by the ranges of s and u, and is universal in the sense that given any Cuntz—
Krieger p-pair s',u' in a C*-algebra A, there is a homomorphism p: C*(G,\;c) — A such
that pos =" and pou =1'.

The theorem follows from the following correspondence between ¢ pairs and (G, A; ¢)-families.
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Lemma 7.16. Let (G, A) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. Fir a normalised cocycle p € C%, (G, \; T) and let c .= V*(p) € C2(G,\;T). Ift, o is a
Toeplitz w-pair in a C*-algebra A, then

t)\g = t)\mg

defines a Toeplitz—Cuntz—Krieger (G, \; ¢)-family in A. If t is a Toeplitz—Cuntz—Krieger (G, A; ¢)-
family in A, then ty :=t\ for A € A and v, =1, for g € G defines a Toeplitz p-pair. Moreover,
t, 1w is a Cuntz—Krieger o-pair if and only if t is a Cuntz—Krieger (G, A; ¢)-family.

Proof. For g € G and X € s(g)A,

)
(g, A) = c(r(g)g, As(A)) = p2,0(g9 <A, 8(A)p1,1(9, M) wo2(r(g), 9> A) = p1.1(g, M)

Also, for h € G and p € Ar(h), since vav =v>v = for v € A° = G° we have

c(p, h) = c(us(p), 7(h)h) = @a0(r(h), h)p11(s(u), r(h))woa(p, s(n) = 1.

Hence, if g € G and X € s(g)A, we have

c(g, Ne(ge A, g<aX) =c(g, \)1 = p1.1(g, A). (7.5)

Suppose that t, 1w is a Toeplitz p-pair. If A\g, uh are composable in G 1 A, then

gt o, = s01,1(g, M)tktgwmgwmh
= ©2.0(A, > 1)©1,1(9, 1£)00,2(9 < s h)tx(gopn) W0 (gapiyn
= C()‘ga Mh)t)\(gbu)m(gqu)ha

so t: Ag — tyto, satisfies (TCK1). For (TCK2), we calculate
thgtrg = Wy titAN0, = 107t ), = 10 10, = 10,(y) = Ss(rg)-

Relation (TCK3) follows from (T1) by definition of a Toeplitz—Cuntz—Krieger (A, g 2)-family.
Now suppose that ¢ is a Toeplitz—Cuntz—Krieger (G, A; ¢)-family, and define t = ¢|g and to = ¢|,.
We have t, = v, for v € A° because G° = A°.
Remark 7.2 implies that t and to satisfy (T1) and (T2). For (T3), we calculate

7.5 S EEEre——
mgtA - tgt)\ (:) C(ga A)C(g > )‘7 g< )‘)thAtQQ)\ - 90171(97 )‘)tgb)\mgm)\'

So t, w is a Toeplitz p-pair. For the final assertion, observe that

Yoohii= Y bommint = Y 6t O
AEVAT AEVAT AEVAT

Proof of Theorem 7.15. (i) The second statement of Lemma 7.16 shows that t, 1w is a Toeplitz -
pair. It generates T C*(G, A;c) because each ty, = c(A, g)trty = c(), g)thw,; and given a Toeplitz
p-pair t', o’, the first statement of Lemma 7.16 shows that t), := t\w; defines a Toeplitz—Cuntz—
Krieger (G, A; ¢)-family. So the universal property of TC*(G, A;¢) gives a homomorphism p such
that p(tyg) = t),. In particular, p(ty) = t}, and p(ro,) = roj,.
(ii) Apply (i) together with the final statement of Lemma 7.16. O
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