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HOMOLOGY AND TWISTED C
∗-ALGEBRAS FOR SELF-SIMILAR ACTIONS

AND ZAPPA–SZÉP PRODUCTS

ALEXANDER MUNDEY AND AIDAN SIMS

Abstract. We study the categorical homology of Zappa–Szép products of small categories, which
include all self-similar actions. We prove that the categorical homology coincides with the homology
of a double complex, and so can be computed via a spectral sequence involving homology groups of
the constituent categories. We give explicit formulae for the isomorphisms involved, and compute
the homology of a class of examples that generalise odometers. We define the C∗-algebras of self-
similar groupoid actions on k-graphs twisted by 2-cocycles arising from this homology theory, and
prove some fundamental results about their structure.
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1. Introduction

This paper achieves three main objectives:

(1) to introduce a unifying framework, which we call matched pairs of categories, for self-similar
actions, graphs of groups, Zappa–Szép products, and k-graphs;

(2) to introduce homology and cohomology for matched pairs, and develop practical tools for
computing them; and

(3) to associate twisted C∗-algebras to self-similar groupoid actions on k-graphs, and establish
fundamental structure theorems for these C∗-algebras.

Self-similar groups of automorphisms of trees were introduced in the early 1980s as models
for new classes of groups. Grigorchuk used self-similar groups to describe the first example of
a finitely generated group with intermediate growth [Gri80, Gri84], and Nekrashevych recently
used them to produce the first simple groups of intermediate growth [Nek18]. Self-similar groups
have been studied intensively ever since Grigorchuk’s work, including, since the seminal work of
Nekrashevych [Nek05], via their C∗-algebras. Nekrashevych studies C∗-algebraic representations
not just a self-similar group, but of the entire self-similar system: a unitary representation of the
group and a Cuntz representation of the alphabet being acted upon. The resulting C∗-algebra
encodes information about the self-similar system through both K-theory [Nek05] and KMS-data
[LRRW14, EP17, LRRW18]. The former suggests that homological invariants of self-similar actions
could be a profitable avenue of study.

Initially, self-similar actions were presented with an apparent asymmetry between the role of
the group and the role of the alphabet. But recent generalisations [LRRW14, EP17, LRRW18,
LY21, LawV22] make it increasingly clear that the roles of the two objects are symmetric, and
that self-similar actions are closely related to Zappa–Szép products.

Introduced by Zappa [Zap42] and Szép [Sze50], Zappa–Szép products of groups are a general-
isation of semidirect products in which each of the two constituent groups acts on the other; so
both embed as (not necessarily normal) subgroups of the product. Subsequent generalisations in-
clude Zappa–Szép-style products of increasingly general pairs of algebraic objects: [Bri05, Law08,
LRRW14, BPRRW17, BKQS18, LRRW18, LawV22, PO22, DL23].

Here, we start with a matched pair of categories: small categories C and D with common object
set, a left action (c, d) 7→ c ⊲ d of C on D and a right action (c, d) 7→ c ⊳ d of D on C satisfying
the compatibility conditions of [Zap42, Sze50]. Each such pair determines a Zappa–Szép-product
category C ⊲⊳ D; this can be viewed either “externally” as the fibred product D s∗r C under a
suitable multiplication, or “internally” as the universal category containing copies of C and D with
a strict factorisation system as in [RW02] that implements ⊲ and ⊳. All of the algebraic product
constructions mentioned above fit into this framework, as do graphs of groups [Bas93, Ser80] and
k-graphs [KP00]. Their C∗-algebraic representations all boil down to representations, in the sense
of Spielberg [Spe20], of the associated Zappa–Szép-product category.



HOMOLOGY FOR SELF-SIMILAR ACTIONS AND ZAPPA–SZÉP PRODUCTS 3

In the study of C∗-algebras associated to algebraic or combinatorial objects, there is a well-
established principle that interesting C∗-algebraic properties emerge when we twist the multi-
plication by a T-valued 2-cocycle. The archetypal examples are the noncommutative tori Aθ,
which are obtained by twisting the multiplication in unitary representations of Zk by T-valued
2-cocycles—which themselves are simply computed in terms of characters (1-cocycles) on the con-
stituent factors of Z in Zk [OPT80]. To generalise this to matched pairs we need both a suitable
definition of cohomology, and effective tools for computing it in terms of the cohomology of the
constituent categories.

For topological spaces X and Y , the classical Eilenberg–Zilber Theorem gives an isomorphism
between the (singular) homology of the chain complex C•(X × Y ) and the total homology of the
tensor product double complex C•(X)⊗ZC•(Y ). We take this as our inspiration for analysing
homology of Zappa–Szép products. We consider the classical categorical homology of C ⊲⊳ D:
n-chains are Z-linear combinations of composable n-tuples, and boundary maps are alternating
sums of the maps obtained by deleting the first or last entry in a composable tuple, or composing
adjacent terms. We show that this homology can be computed in terms of a double complex, called
the matched complex : its columns are chain complexes for the homology of D with coefficients in
modules spanned by composable tuples in C; and its rows are chain complexes for the homology
of C with coefficients in modules spanned by composable tuples in D. The matched complex C•,•

is not the tensor product C•(C)⊗ZC•(D), but its terms are fibred products of a similar form.
The matched complex admits two natural homology theories—diagonal homology H∆

• (C,D)
and total homology HTot

• (C,D). These are isomorphic via explicit chain equivalences called the
Eilenberg–Zilber map and the Alexander–Whitney map. The total homology HTot

• (C,D), is de-
fined in terms of the homology of the constituent categories C and D. So to see that the categorical
homology H⊲⊳

• (C,D) of C ⊲⊳ D suits our purposes, we use the method of acyclic models to construct
explicit chain equivalences between the chain complex C⊲⊳

• (C,D) defining H⊲⊳
• (C,D) and the diag-

onal chain complex C∆
• (C,D). Combined with the Eilenberg–Zilber map, this gives a computable

isomorphism HTot
• (C,D) ∼= H⊲⊳

• (C,D). Dualising yields isomorphisms H•
Tot(C,D;T) ∼= H•

⊲⊳(C,D;T)
in cohomology.

As an aside, this shows that if a category admits a strict factorisation system, then its categorical
homology can be computed in terms of that of the embedded subcategories. This yields, for
example, a potential iterative approach to computing homology for k-graphs.

We use our results to compute the homology of a class of self-similar groupoid actions on graphs
that generalise the odometer. We calculate the homology in terms of the two nonzero homology
groups of the underlying graph E, and the kernel and cokernel of an E0×E1 matrix encoding the
orders of the odometers involved. En passant, we establish useful general results about homology
for matched pairs in which one factor is the path category of a directed graph, or a bundle of
monoids, with stronger results when the monoids are copies of Z. These results would be well
suited to computing the homology of Exel–Pardo systems [EP17].

The main motivation for our work on homology is to study twisted C∗-algebras of matched
pairs. The point is that the natural definition of a C∗-algebraic representation of a matched pair,
as made clear by Spielberg’s work [Spe20], is as a multiplicative map ζ 7→ tζ from its Zappa–Szép
product category to a semigroup of partial isometries. Consequently, the natural definition of a
twisted representation is in terms of a categorical 2-cocycle c on the Zappa–Szép product: we
twist by the formula sζsη = c(ζ, η)sζη. However, the total homology (and cohomology) is a more
computable theory, and clearly reflects the decomposition of the Zappa–Szép product category
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into its constituent components. Our main homology theorem allows us to define and analyse
the C∗-algebras in the natural way via categorical 2-cocycles, but pass to total cohomology when
we wish to identify the possible twists for a given matched pair or produce nontrivial cocycles in
concrete examples.

We explore this in the context of matched pairs consisting of a groupoid G and a row-finite
k-graph Λ with no sources (self-similar actions of groupoids on such k-graphs). This covers a fairly
general class of examples with relatively complex cohomology, for which C∗-algebraic representa-
tions in the sense of Spielberg of the associated untwisted pair are well understood. Given a cate-
gorical 2-cocycle c ∈ C2

⊲⊳(G,Λ;T), we define a universal twisted Toeplitz algebra T C∗(G,Λ; c) and
a universal Cuntz–Krieger algebra C∗(G,Λ; c) in both of which all the generators are nonzero. We
show that T C∗(Λ, c|Λ2) embeds in T C∗(G,Λ; c) and likewise that C∗(Λ, c|Λ2) embeds in C∗(G,Λ; c).
We also show that if G is amenable then C∗(G, c|G2) embeds in T C∗(G,Λ; c), and that an addition
condition developed by Yusnitha [Yus23] ensures that it also embeds in C∗(G,Λ; c). We establish a
gauge-invariant uniqueness theorem for C∗(G,Λ; c) and prove that cohomologous 2-cocycles yield
isomorphic twisted C∗-algebras.

We then construct twisted C∗-algebras T C∗
ϕ(G,Λ) and C∗

ϕ(G,Λ) associated to a total 2-cocycle

ϕ ∈ C2
Tot(G,Λ;T). We prove that our cochain equivalence Ψ∗ : C2

Tot(G,Λ;T)→ C2
⊲⊳(G,Λ;T) induces

isomorphisms T C∗
ϕ(G,Λ) ∼= T C∗(G,Λ,Ψ∗(ϕ)) and C∗

ϕ(G,Λ) ∼= C∗(G,Λ; Ψ∗(ϕ)).

The paper is organised as follows. In Section 2 we establish some background: on categories; on
actions of one category on another; and on directed graphs and their path categories.

In Section 3 we discuss matched pairs of small categories. We show that each matched pair
admits a Zappa–Szép product, and discuss internal and external descriptions of this object and
its relationship to strict factorisation systems. We show how the actions in a matched pair extend
to actions on the categories of composable tuples in the categories involved. We give a number
of concrete examples of matched pairs, including the key model matched pairs that serve as local
models for composable tuples in arbitrary matched pairs.

In Section 4 we introduce the three homology theories for matched pairs. We first introduce
categorical homology of a small category, described in terms of simplicial sets. We then introduce
the matched complex—a double complex associated to a matched pair—in terms of a bisimplicial
group, and show that the assignment of the matched complex to a matched pair is functorial. We
then define the diagonal complex, the total complex, and the associated homology theories of a
matched pair.

In Section 5 we prove our main homology theorem: categorical homology, total homology, and
diagonal homology coincide. In Section 5.1, we describe the three chain maps that appear in
our main theorem: the first is the Eilenberg–Zilber map for double complexes—we just give a
formula for use in computations; the other two, Π: C∆

• → C⊲⊳
• and Ψ: C⊲⊳

• → CTot
• , are specific to

our situation. In Section 5.2, we state the main theorem, Theorem 5.3, describe the Alexander–
Whitney map, which induces the inverse of the Eilenberg–Zilber map, and outline the strategy
of the proof. In Section 5.3, we show that our model matched pairs are acyclic in both diagonal
and categorical homology, and describe functors from the Zappa–Szép-product categories of model
matched pairs into C ⊲⊳ D that realise all generators of each chain complex. In Section 5.4
we invoke the method of acyclic models to characterise chain equivalences between the diagonal
and categorical complexes. In Subsection 5.5 we show that the concrete chain maps described
in Section 5.1 are such chain equivalences and describe their inverses. Finally, in Section 5.6,
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we describe a spectral sequence that computes the homology of a matched pair, and a Künneth
theorem for matched pairs of monoids.

In Section 6, we compute the homology of a concrete class of examples: “graphs of odometers.”
We consider a finite directed graph E together with a labelling p : E1 → {1, 2, . . .} of its edges by
strictly positive integers. We build the augmented graph, F that has a bundle {e} × Z/p(e)Z of
p(e) parallel edges for each edge e ∈ E. We consider a matched pair (E0 × Z, F ∗) in which the
copies of Z behave, collectively, like odometers. In Section 6.1, we show that in a matched pair
where the second factor is the path category of a graph, only the first two rows of the second page
of the spectral sequence obtained above are nonzero. In Section 6.2, we show that for matched
pairs where the first factor is a bundle of monoids, the homology groups each decompose as the
direct sum of the corresponding homology groups (with appropriate coefficients) of the monoids.
In Section 6.3, we prove that if the first factor is a bundle of copies of Z, only the first two columns
of the spectral sequence are nonzero, and the homology of each column is computable via a chain
complex very similar to the bar resolution of Z. In Section 6.4 we restrict to graphs of odometers,
and write down an E0×E1 matrix over Z whose kernel and cokernel, together with the homology
of the graph E, compute the homology of the system (Theorem 6.15 and Corollary 6.16).

In Section 7, we consider twisted C∗-algebras associated to matched pairs. Section 7.1 deals with
twists by categorical cocycles, and establishes some fundamental results about the associated C∗-
algebras: we prove that the generators are all nonzero and give sufficient conditions under which the
twisted C∗-algebra of G embeds in each of T C∗(G,Λ; c) and C∗(G,Λ; c) in Proposition 7.7; we prove
our gauge-invariant uniqueness theorem, Corollary 7.10; and we show that the isomorphism classes
of T C∗(G,Λ; c) and C∗(G,Λ; c) only depend on the cohomology class of c. Section 7.2 describes
twists by total cocycles, and shows that these correspond to twists by categorical 2-cocycles via
the isomorphism of cohomology induced by our main theorem above (Theorem 7.15).

2. Preliminaries

Throughout this article, C and D denote small categories. We identify each C with its set of
morphisms and write C0 ⊆ C for the set of identity morphisms (identified with objects). We
write r, s : C → C0 for the maps assigning to c ∈ C (the identity morphisms at) its codomain and
domain. For n ≥ 1, we write Cn for the set of composable n-tuples in C and define r, s : Cn → C0

by r(c1, . . . , cn) = r(c1) and s(c1, . . . , cn) = s(cn). For x, y ∈ C0 we write xCn := {(c1, . . . , cn) |
r(c1) = x}, Cny := {(c1, . . . , cn) | s(cn) = y}, and xCny := xCn ∩ Cny.

If C0 = D0 we define

C ∗ D := C ∗s r D = {(c, d) ∈ C × D | s(c) = r(d)}.

If C, C′, and D have the same objects and f : C → C′ satisfies s(f(c)) = f(s(c)), then f ∗
1D : C ∗ D → C′ ∗ D is the map (f ∗ 1D)(c, d) := (f(c), d). Similarly, if r(f(c)) = r(c), then
1D ∗ f : D ∗ C → D ∗ C′ is the map(1D ∗ f)(d, c) := (d, f(c)).

An action of a category C on the left of a set X consists of maps a : X → C0 and ⊲ : {(c, x) |
s(c) = a(x)} → X such that a(x)⊲x and (c1c2)⊲x = c1⊲(c2 ⊲x) for all (c1, c2) ∈ C

2 and x ∈ X with
s(c2) = a(x). Right actions are defined similarly, and correspond to left actions of the opposite
category Cop. If C0 = D0 we only consider left actions for which a = r : D → C0, so ⊲ is a map
⊲ : C ∗ D → D. Similarly, we only consider right actions of D on C for which a = s : C → D0.
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A groupoid G is a small category in which every morphism g ∈ G has an inverse g−1 ∈ G such
that gg−1 = r(g) and g−1g = s(g). The set of identity morphisms is called the unit space of G. In
this paper, G always denotes a discrete groupoid.

A directed graph is a quadruple E = (E0, E1, r, s), consisting of countable sets E0 of vertices and
E1 of edges, and maps r : E1 → E0 and s : E1 → E0 called the range and source maps. For n ≥ 1,
we denote by En := {µ = µ1 · · ·µn | µi ∈ E

1, s(ei) = r(ei+1)}, the paths of length n in the graph E.
If µ ∈ Em and ν ∈ En with s(µ) = r(ν), then µν := µ1 · · ·µmν1 · · ·νn ∈ E

m+n is the concatenation
of µ and ν. The range and source maps extend to En: r(µ) = r(µ1) and s(µ) = s(µn). We regard
elements v of E0 as paths of length 0 with r(v) = s(v) = v, and we extend concatenation by the
formula r(µ)µ = µ = µs(µ).

The path category of a directed graph E is the collection E∗ :=
⊔∞

n=0 E
n of all finite paths in

E. The objects of E∗ are E0, and the range and source maps on the En extend to domain and
codomain maps r : E∗ → E0 and s : E∗ → E0. Composition is concatenation. We use |µ| to denote
the length of µ ∈ E∗, so |µ| = n if and only if µ ∈ En.

3. Matched pairs, Zappa–Szép products, and factorisation systems

3.1. Matched pairs. In this subsection we introduce matched pairs of small categories and their
associated Zappa–Szép-product categories. We also examine how factorisation rules and strict
factorisation systems are related to these constructions.

Definition 3.1. A matched pair is a quadruple (C,D, ⊲, ⊳) consisting of small categories C, D with
C0 = D0, a left action ⊲ : C ∗ D → D of C on D, and a right action ⊳ : C ∗ D → C of D on C such
that for all (c1, c2, d1, d2) ∈ C

2 ∗ D2,

(MP1) s(c2 ⊲ d1) = r(c2 ⊳ d1),

(MP2) c2 ⊲ (d1d2) = (c2 ⊲ d1)((c2 ⊳ d1) ⊲ d2), and

(MP3) (c1c2) ⊳ d = (c1 ⊳ (c2 ⊲ d1))(c2 ⊳ d1).

We often just say that (C,D) is a matched pair, and suppress the actions ⊲, ⊳.
The category MP of matched pairs has matched pairs as objects and morphisms f = (fL, fR) : (C,D)→

(C′,D′) consisting of pairs of functors fL : C → C′ and fR : D → D′ such that for all (c, d) ∈ C ∗D,

(i) (fL(c), fR(d)) ∈ C′ ∗ D′,

(ii) fL(c) ⊲ fR(d) = fR(c ⊲ d), and

(iii) fL(c) ⊳ fR(d) = fL(c ⊳ d).

Remark 3.2. We are unsure of the provenance of the term matched pair. It is used for various
related notions: matched pairs of groupoids in [AA05]; and matched pairs of Hopf algebras in
[Sin72]. For matched pairs with C0 6= D0, see [DL23, Definition 2.2].

Given a matched pair (C,D), we define r : D ∗ C → C0 and s : D ∗ C → C0 by r(d, c) := r(d) and
s(d, c) := s(c).

Definition 3.3. Let C and D be small categories with C0 = D0. A factorisation rule on (C,D) is
a map ⊲⊳ : C ∗ D → D ∗ C such that

(FR1) r(c ⊲⊳ d) = r(c) and s(c ⊲⊳ d) = s(d) for all (c, d) ∈ C ∗ D, and
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(FR2) if µC : C2 → C and µD : D2 → D denote the composition maps, then the following diagrams
commute:

C2 ∗ D C ∗ D ∗ C D ∗ C2

C ∗ D D ∗ C

µC∗1D

1C∗⊲⊳ ⊲⊳ ∗1C

1D∗µC

⊲⊳

C ∗ D2 D ∗ C ∗ D D2 ∗ C

C ∗ D D ∗ C.

1C∗µD

⊲⊳ ∗1D 1D∗⊲⊳

µD∗1C

⊲⊳

The name factorisation rule becomes clear in the context of Zappa–Szép products (Defini-
tion 3.6). Matched pairs and factorisation rules are equivalent in the following sense.

Lemma 3.4. Let C and D be small categories with the same object set. If (C,D, ⊲, ⊳) is a matched
pair, then the formula

c ⊲⊳ d := (c ⊲ d, c ⊳ d) (3.1)

determines a factorisation rule ⊲⊳ : C∗D → D∗C. Conversely, if ⊲⊳ : C∗D → D∗C is a factorisation
rule and pD : D ∗C → D and pC : D ∗C → C are the coordinate projections, then ⊲ : C ∗D → D and
⊳ : C ∗ D → C given by

c ⊲ d := pD(c ⊲⊳ d) and c ⊳ d := pC(c ⊲⊳ d) (3.2)

make (C,D, ⊲, ⊳) a matched pair.

Proof. First suppose that ⊲⊳ : C ∗ D → D ∗ C is a factorisation rule. Define ⊲, ⊳ by (3.2). Since
c ⊲⊳ d ∈ D ∗ C, (MP1) holds. The left-hand diagram of (FR2) implies that

((c1c2) ⊲ d, (c1c2) ⊳ d) = (c1c2) ⊲⊳ d = (c1 ⊲ (c2 ⊲ d), (c1 ⊳ (c2 ⊲ d))(c2 ⊳ d)),

so ⊲ is a left action and (MP3) holds. Symmetrically, ⊳ is a right action and (MP2) holds.
Now suppose that (C,D, ⊲, ⊳) is a matched pair and define ⊲⊳ : C ∗ D → D ∗ C by (3.1). Then

c ⊲⊳ d ∈ D ∗ C by (MP1). Since ⊲, ⊳ are actions r(c ⊲ d) = r(c) and s(c ⊳ d) = s(d), giving (FR1).
For (FR2) we use (MP3) at the second equality to compute,

(c1c2) ⊲⊳ d = (c1c2 ⊲ d, c1c2 ⊳ d) = (c1 ⊲ (c2 ⊲ d), (c1 ⊳ (c2 ⊲ d))(c2 ⊳ d))

= (1D ∗ µC) ◦ (⊲⊳ ∗1C) ◦ (1C∗ ⊲⊳)(c1, c2, d),

and symmetrically c ⊲⊳ (d1d2) = (µd ∗ 1C) ◦ (1D∗ ⊲⊳) ◦ (⊲⊳ ◦1D)(c1, d2, d2). �

We use Lemma 3.4 without comment to move between matched pairs and factorisation rules.
Importantly, (MP1)–(MP3) give the fibre product D ∗ C the structure of a category.

Lemma 3.5. Suppose that (C,D) is a matched pair and let µC and µD denote the composition
maps on C and D respectively. Define µ⊲⊳ : (D ∗ C)2 → D ∗ C by

µ⊲⊳ := (µD ∗ µC) ◦ (1D ∗ ⊲⊳ ∗1C).

Then for (d1, c1), (d2, c2) ∈ D ∗ C such that s(c1) = r(d2),

µ⊲⊳((d1, c1), (d2, c2)) = (d1(c1 ⊲ d2), (c1 ⊳ d2)c2). (3.3)

Moreover, D ∗ C is a small category with (D ∗ C)0 = C0 = D0, r(d, c) := r(d), s(d, c) := s(c), and
composition (d1, c1)(d2, c2) := µ⊲⊳((d1, c1), (d2, c2)). The maps ιC : C → D ∗ C and ιD : D → D ∗ C
defined by ιC(c) = (r(c), c) and ιD(d) = (d, s(d)) are faithful functors.
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Proof. Equation (3.3) follows from (3.1). For associativity, we calculate:

µ⊲⊳

(
(d1, c1, )µ⊲⊳((d2, c2), (d3, c3))

)

= µ⊲⊳

(
(d1, c1), (d2(c2 ⊲ d3), (c2 ⊳ d3)c3)

)

=
(
d1(c1 ⊲ (d2(c2 ⊲ d3))), c1 ⊳ (d2(c2 ⊲ d3))(c2 ⊳ d3)c3

)

=
(
d1(c1 ⊲ d2)((c1 ⊳ d2)c2 ⊲ d3), ((c1 ⊳ d2) ⊳ (c2 ⊲ d3))(c2 ⊳ d3)c3

)

=
(
d1(c1 ⊲ d2)((c1 ⊳ d2)c2 ⊲ d3), (c1 ⊳ d2(c2 ⊲ d3))(c2 ⊳ d3)c3

)

= µ⊲⊳

(
d1(c1 ⊲ d2), (c1 ⊳ d2)c2, d3, c3

)

= µ⊲⊳

(
µ⊲⊳((d1, c1), (d2, c2)), (d3, c3)

)
.

For functoriality of ιC we calculate

µ⊲⊳(ιC(c1), ιC(c2)) = (r(c1)(c1 ⊲ s(c1)), (c1 ⊳ s(c1))c2) = (r(c1), c1c2) = ιC(c1c2).

Functoriality of ιD follows analogously. Faithfulness is clear. �

Definition 3.6. We call the small category D ∗ C with the composition µ⊲⊳ of Lemma 3.5 the
Zappa–Szép product of C and D, and denote it C ⊲⊳ D.

We identify C and D with the subcategories ιC(C) and ιD(D) of C ⊲⊳ D. In particular, for
(d, c) ∈ D ∗ C we write dc := (d, c) ∈ C ⊲⊳ D. So for ci ∈ C and di ∈ D,

d1c1d2c2 = d1(c1 ⊲ d2)(c1 ⊳ d2)c2.

Example 3.7. If C is a small category, then (C, C0) is a matched pair with actions c ⊲ s(c) = r(c)
and c ⊳ s(c) = c. We have C ⊲⊳ C0 ∼= C ∼= C0 ⊲⊳ C.

Example 3.8. Suppose that G and H are groups and suppose that (G,H, ⊲, ⊳) is a matched pair.
Then G ⊲⊳ H is the Zappa–Szép product of G and H from [Zap42, Sze50]. If ⊳ is the trivial right
action of H on G, then for hi ∈ H and gi ∈ G, we have

(h1, g1)(h2, g2) = (h1(g1 ⊲ h2), g1g2),

so G ⊲⊳ H is the semidirect product G⋉H .

Zappa–Szép products have the following universal property.

Proposition 3.9. Suppose that (C,D) is a matched pair, let A be a small category such that
A0 = C0 = D0, and suppose that jC : C → A and jD : D → A are functors satisfying

jC(c)jD(d) = jD(c ⊲ d)jC(c ⊳ d) (3.4)

for all (c, d) ∈ C ∗ D. Then there exists a unique functor jC ⊲⊳ jD : C ⊲⊳ D → A such that
(jC ⊲⊳ jD) ◦ ιC = jC and (jC ⊲⊳ jD) ◦ ιD = jD. If B is a small category with B0 = C0 and kC : C → B
and kD : D → B are functors satisfying (3.4) and with the same universal property, then kC ⊲⊳ kD

is an isomorphism C ⊲⊳ D → B.

Proof. Define jC ⊲⊳ jD : C ⊲⊳ D → A by (jC ⊲⊳ jD)(d, c) = jD(d)jC(c). Clearly, (jC ⊲⊳ jD) ◦ ιC = jC

and (jC ⊲⊳ jD) ◦ ιD = jD. For functoriality we compute,

(jC ⊲⊳ jD)(d1c1d2c2) = jD(d1)jD(c1 ⊲ d2)jC(c1 ⊳ d2)jC(c2)

= jD(d1)jC(c1)jD(d2)jC(c2) = (jC ⊲⊳ jD)(d1c1) (jC ⊲⊳ jD)(d2c2).
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If f : C ⊲⊳ D → A is a functor satisfying f ◦ ιC = jC and f ◦ ιD = jD, then f(dc) = f(ιD(d)ιC(c)) =
jD(d)jC(c) = (jC ⊲⊳ jD)(dc). If (B, kC, kD) has the same universal property, then that universal
property applied to ιC and ιD yields a functor θ : B → C ⊲⊳ D inverse to kC ⊲⊳ kD. �

Corollary 3.10. The assignment (C,D) 7→ C ⊲⊳ D is functorial: given a matched-pair morphism
(hL, hR) : (C,D) → (C′,D′), there is a functor h : C ⊲⊳ D → C′ ⊲⊳ D′ such that h(dc) = hR(d)hL(c)
for all (d, c) ∈ D ∗ C. This functor satisfies h ◦ ιC = ιC′ ◦ hL and h ◦ ιD = ιD′ ◦ hR. Conversely, if
h : C ⊲⊳ D → C′ ⊲⊳ D′ is a functor such that h(C) ⊆ C′ and h(D) ⊆ D′, then (h|C, h|D) : (C,D) →
(C′,D′) is a matched pair morphism.

Proof. To obtain h, apply Proposition 3.9 to ιC ◦ h
L and ιD ◦ h

R. The second statement follows
from a one-line calculation. �

As with groups, we can take either an “external” or an “internal” view of Zappa–Szép products
of categories. Recall that a wide subcategory of a category E is a subcategory containing E0.

Definition 3.11. A strict factorisation system for a category E is a pair [D, C] of wide subcategories
of E such that for every e ∈ E there are unique d ∈ D and c ∈ C satisfying e = dc.

Remark 3.12. Factorisation systems are related to distributive laws on monads: strict factorisation
systems are equivalent to distributive laws in the category of spans [RW02, Theorem 3.8].

Proposition 3.13. Let (C,D) be a matched pair. Then [D, C] is a strict factorisation system
for C ⊲⊳ D. Conversely, let [D, C] be a strict factorisation system for a small category E . For
(c, d) ∈ C ∗D, let c ⊲ d ∈ D and c ⊳ d ∈ C be the unique elements such that cd = (c ⊲ d)(c ⊳ d). Then
(C,D, ⊲, ⊳) is a matched pair and (d, c) 7→ dc is an isomorphism C ⊲⊳ D ∼= E .

Proof. Suppose that (C,D) is a matched pair. Since C ⊲⊳ D = D∗C as sets, each e ∈ C ⊲⊳ D factors
uniquely as e = dc.

Conversely, suppose that [D, C] is a unique factorisation system for E and fix (c1, c2, d1, d2) ∈
C2 ∗ D2. Let d′, d′′, d′′′ ∈ D and c′, c′′, c′′′ ∈ C be the unique elements such that c1c2d1 = d′c′,
c2d1 = d′′c′′, and c1d

′′ = d′′′c′′′. Then d′′′(c′′′c′′) = c1d
′′c′′ = c1c2d1 = d′c′, so uniqueness of

factorisations gives (c1c2) ⊲ d1 = d′ = d′′′ = c1 ⊲ d
′′ = c1 ⊲ (c2 ⊲ d1). So ⊲ is an action of C on D.

Now let d′, d′′, d′′′ ∈ D and c′, c′′, c′′′ ∈ C be the unique elements such that c2d1d2 = d′c′,
c2d1 = d′′c′′, and c′′d2 = d′′′c′′′. Then d′′d′′′c′′′ = d′c′, so uniqueness of factorisations gives c2 ⊲
(d1d2) = d′ = d′′d′′′ = (c2 ⊲ d1)(c

′′ ⊲ d2) = (c2 ⊲ d1)((c2 ⊳ d1) ⊲ d2), verifying (MP2).
Symmetrically, ⊳ defines a right action of D on C satisfying (MP3). Condition (MP1) follows

from the composition laws in E . �

Remark 3.14. Proposition 3.13 says that the internal and external views of Zappa–Szép products
are equivalent. Given a matched pair (C,D) we can equivalently: (a) build the concrete product
C ⊲⊳ D; or (b) say that E is a Zappa–Szép product if it contains copies of D and C as wide
subcategories such that [D, C] is a strict factorisation system implementing the given actions.

For C∗-algebraic representations à la Speilberg [Spe20] it is important to know when a small
category C is left cancellative in the sense that if c1c2 = c1c3, then c2 = c3. The following lemma
provides a sufficient condition under which Zappa–Szép products are left cancellative.

Lemma 3.15. If (C,D) is matched pair in which C and D are both left cancellative and for each
c ∈ C the map c ⊲ · : s(c)D → r(c)D is injective, then C ⊲⊳ D is left cancellative.
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Proof. Suppose that d1c1, d2c2 ∈ C ⊲⊳ D satisfy d1c1d2c2 = d1c1d3c3. Then d1(c1 ⊲ d2) = d1(c1 ⊲ d3)
in D and (c1 ⊳d2)c2 = (c1 ⊳d3)c3 in C. Since D is left cancellative, c1 ⊲d2 = c1 ⊲d3, and so injectivity
of the left action gives d2 = d3. Consequently, (c1 ⊳ d2)c2 = (c1 ⊳ d2)c3. Left cancellation in C
implies that c2 = c3, so C ⊲⊳ D is left cancellative. �

Example 3.16. If C is a groupoid then it acts cancellatively on both itself and D because it has
inverses. So C ⊲⊳ D is left-cancellative whenever D is.

3.2. Extending matched pairs to composable tuples. We define homology for matched pairs
in terms of associated categories of composable tuple, so it is important to understand how ⊲ and
⊳ extend to these categories.

Definition 3.17. The free category (or path category) of a small category C is the category C∗

with morphisms
⋃

k≥0 C
k, identity morphisms C0, and composition (for non-identity morphisms)

given by concatenation.

Remark 3.18. There is a subtlety here. The set C1 of 1-tuples in C∗ contains the 1-tuples {(v) |
v ∈ C0}, but this disjoint from C0 ⊆ C∗. This is reflected in the composition law: for v ∈ C0

and (c1, . . . , ck) ∈ Ck with r(c1) = v, we have v(c1, . . . , ck) = (c1, . . . , ck) while (v)(c1, . . . , ck) =
(v, c1, . . . , ck).

Lemma 3.19. Let (C,D) be a matched pair. Define ⊲⊳n : C ∗ Dn → Dn ∗ C inductively by ⊲⊳1:=⊲⊳,
and

⊲⊳n:= (1Dn−1∗ ⊲⊳) ◦ (1C∗ ⊲⊳n−1)

for n ≥ 2. Define ⊲⊳∗ : C ∗ D∗ → D∗ ∗ C by ⊲⊳∗|C∗Dn := ⊲⊳n . Then

(i) for each n ≥ 1 and 1 ≤ p < n,

⊲⊳n = (1Dn−p ∗ ⊲⊳p) ◦ (⊲⊳n−p ∗1Dp), (3.5)

(ii) ⊲⊳∗ is a factorisation rule, and

(iii) if µD : D∗ → D is the map µD(d1, d2, . . . , dn) = d1d2 · · · dn, then (1C, µD) : (C,D∗)→ (C,D)
is a matched-pair morphism.

Proof. (i) When n = 1, we have p = 1, so (3.5) is vacuous. For n ≥ 2, equation (3.5) holds for
p = 1 by definition of ⊲⊳n. Fix n0 ≥ 2 and 1 ≤ p0 ≤ n0, and suppose inductively, that (3.5) holds
for all n < n0 and 1 ≤ p < p0. In the diagram

C ∗ Dn0 Dn0−p0 ∗ C ∗ Dp0 Dn0 ∗ C

Dn0−p0+1 ∗ C ∗ Dp0−1

⊲⊳n0−p0 ∗1Dp0 1
Dn0−p0 ∗⊲⊳p0

⊲⊳n0−p0+1 ∗1
Dp−1 1

Dn0−p0+1∗⊲⊳p0−1

1
Dn0−p0 ∗⊲⊳ ∗1

Dp0−1

the left-hand triangle commutes by the inductive definition of ⊲⊳n0−p0, and the right-hand triangle
commutes by induction since p0 < n0. Since p0 − 1 < p0, the composition of the maps along the
bottom of the triangle is ⊲⊳n0 by induction. So (3.5) holds for all n and p.
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(ii) A routine induction verifies (FR1). To see that the first diagram of (FR2) for ⊲⊳∗ commutes,
consider the following diagram.

C2 ∗ Dn+1 C ∗ Dn+1 ∗ C Dn+1 ∗ C2

C ∗ Dn ∗ C ∗ D Dn ∗ C ∗ D ∗ C

Dn ∗ C2 ∗ D

C ∗ Dn+1 Dn ∗ C ∗ D Dn+1 ∗ C

µC∗1
Dn+1

1C∗⊲⊳n+1

1C∗⊲⊳n∗1D

⊲⊳n+1∗1C

⊲⊳n∗1D∗C

1
Dn+1 ∗µC

1C∗Dn ∗⊲⊳

⊲⊳n∗1C∗D

1Dn ∗⊲⊳

1Dn ∗µC∗1D

1Dn∗C∗⊲⊳

⊲⊳n∗1D 1Dn ∗⊲⊳

The central diamond clearly commutes, the top-left and top-right triangles commute by the defi-
nition of ⊲⊳n+1, and the bottom-right pentagon commutes by (FR2) for ⊲⊳. The composition of the
maps along the bottom row of the diagram is ⊲⊳n+1 by definition. So the whole diagram commutes
if and only if the bottom-left pentagon commutes. An induction now shows that the first diagram
of (FR2) commutes for ⊲⊳∗.

For m,n 6= 0, the multiplication map µD∗ : Dm ∗ Dn → Dm+n is the obvious bijection. So the
second diagram of (FR2) commutes by (i). Hence, ⊲⊳∗ is a factorisation rule.

(iii) By Lemma 3.4 and Corollary 3.10, it suffices to show that (µD ∗ 1C)◦ ⊲⊳n : C ∗ Dn → D ∗ C
and ⊲⊳ ◦(1C ∗ µD) : C ∗Dn → D∗C are equal for all n. For n = 1 this is trivial, so suppose equality
holds for n− 1, and consider the following diagram.

C ∗ Dn Dn−1 ∗ C ∗ D Dn ∗ C

C ∗ D2 D ∗ C ∗ D D2 ∗ C

C ∗ D D ∗ C

⊲⊳n−1 ∗1D 1
Dn−1 ∗⊲⊳

1C∗µD∗1D µD∗1C∗D µD∗1D∗C

⊲⊳ ∗1D 1D∗⊲⊳

1C∗µD

⊲⊳

µD∗1C

The bottom pentagon commutes by (FR2) for ⊲⊳. The top-right square clearly commutes. The
top left square commutes by the inductive hypothesis, and so the whole diagram commutes. The
composition along the top row is equal to ⊲⊳n, and the composition along the left and right columns
are 1C ∗ µD and µD ∗ 1C. So (µD ∗ 1C)◦ ⊲⊳n=⊲⊳ ◦(1C ∗ µD). �

Lemmas 3.19 and 3.4 imply that (C,D∗) is a matched pair. The left action of C on Dk is given
explicitly by

c ⊲ (d1, . . . , dk) := (c ⊲ d1, (c ⊳ d1) ⊲ (d2, . . . , dk))

= (c1 ⊲ d1, (c1 ⊳ d1) ⊲ d2, (c1 ⊳ (d1d2)) ⊲ d3, . . . , (c1 ⊳ (d1 · · · dk−1)) ⊲ dk).

and the right action of Dk on C is given by c ⊳ (d1, . . . , dk) = c ⊳ (d1 · · · dk).
We can also define n⊲⊳ : Cn ∗ D → D ∗ Cn inductively by 1⊲⊳ :=⊲⊳, and

(c1, . . . , cn) n⊲⊳ d = (⊲⊳ ∗1Cn−1)((c2, . . . , cn) n−1⊲⊳ d),

and then ∗⊲⊳ : C∗ ∗ D → D ∗ C∗ by ∗⊲⊳ |Cn∗D = n⊲⊳ . Lemma 3.19 applied to opposite categories
implies that ∗⊲⊳ is a factorisation rule with properties analogous to those of ⊲⊳∗. The left action
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of Ck on D is given by (c1, . . . , ck) ⊲ d = (c1 · · · ck) ⊲ d and the right action of D on Ck is given by

(c1, . . . , ck) ⊳ d = ((c1, . . . , ck−1) ⊳ (ck ⊲ d), ck ⊳ d)

= (c1 ⊳ ((c2 · · · ck) ⊲ d), . . . , ck−2 ⊳ ((ck−1ck) ⊲ d), ck−1 ⊳ (ck ⊲ d), ck ⊳ d).

Since (C∗,D) is itself a matched pair, (C∗,D∗) can also be equipped with the structure of a
matched pair via Lemma 3.19.

Proposition 3.20. Let (C,D) be a matched pair. For m,n ≥ 1 define ⊲⊳m,n : Cm ∗ Dn → Dn ∗ Cm

inductively by ⊲⊳1,n:= ⊲⊳n : C ∗ Dn → Dn ∗ C and

⊲⊳m,n:= (⊲⊳n ∗1Cm−1) ◦ (1C∗ ⊲⊳m−1,n).

Define ⊲⊳∗,∗ : C∗ ∗ D∗ → D∗ ∗ C∗ by ⊲⊳∗,∗|Cm∗Dn = ⊲⊳m,n. Then

(i) ⊲⊳∗,∗ is a factorisation rule, and

(ii) (µC, µD) : (C∗,D∗)→ (C,D) is a matched-pair morphism.

Proof. That (C,D∗) is a matched pair, together with an additional application of Lemma 3.19,
gives (i). Two applications of Lemma 3.19(iii) give (ii). �

We often write ⊲⊳ : C∗ ∗ D∗ → D∗ ∗ C∗ for the map ⊲⊳∗,∗ of Proposition 3.20, which implies
that C∗ ⊲⊳ D∗ is a category with strict factorisation system [D∗, C∗]. We identify C∗ ⊲⊳ D∗ as
a set with D∗ ∗ C∗. For each composable k-tuple γ ∈ C∗ ⊲⊳ D∗ there exist pi, qi ≥ 0 such that
γ ∈ Dp1 ∗ Cq1 ∗ · · · ∗ Dpk ∗ Cqk ; its product belongs to Dp1+···+pk ∗ Cq1+···+qk.

The map ⊲⊳m,n can be computed in any order in the following sense.

Corollary 3.21. Let (C,D) be a matched pair. For each 1 ≤ p < m and 1 ≤ q < n, the diagram

Cm ∗ Dn Dn ∗ Cm

Cm−p ∗ Dq ∗ Cp ∗ Dn−q Dq ∗ Cm−p ∗ Dn−q ∗ Cp

⊲⊳m,n

1
Cm−p ∗⊲⊳p,q ∗1

Dn−q 1Dq ∗⊲⊳m−p,n−q ∗1Cp

⊲⊳m−p,q ∗ ⊲⊳p,n−q

(3.6)

commutes.

Proof. Elements of Cm ∗ Dn = Cm−p ∗ Cp ∗ Dq ∗ Dn−q may considered as composable 4-tuples in
C∗ ⊲⊳ D∗. Since the 3-map composition around the bottom of (3.6) is an iterated product in
C∗ ⊲⊳ D∗, uniqueness of factorisation implies that the diagram commutes. �

Corollary 3.21 gives ⊲⊳m,n= (1Dn−1∗ ⊲⊳m,1) ◦ (⊲⊳m,n−1 ∗1D). So we could also have applied
Lemma 3.19 to (C,D∗) to obtain the matched-pair structure on (C∗,D∗) of Proposition 3.20.

3.3. Model matched pairs. We introduce a class of model categories that will play a central
role in our computation of homology (Theorem 5.3) below.

Let Xn := {(p, q) ∈ N× N | 0 ≤ p + q ≤ n}. We denote elements of Xn using bold font. Given
a ∈ Xn we write a = (aL, aR) to indicate the left and right coordinates of a.

Definition 3.22. Let Γn = {(a,b) ∈ Xn ×Xn | aL ≤ bL and aR ≥ bR}. Define r, s : Γn → Xn by
r(a,b) = a and s(a,b) = b. Identify Xn with {(a, a) | a ∈ Xn}.

With composition defined by (a,b)(b, c) := (a, c), the set Γn is a small category. It can also be
realised as the Zappa–Szép product of the path categories of two graphs. Let En be the directed
graph with E0

n = Xn and E1
n = {ep,q : (p, q) ∈ Xn and p+q < n}, with r(ep,q) = (p, q) and s(ep,q) =
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(p+ 1, q). Let Fn be the directed graph with F 0
n = Xn and F 1

n = {fp,q : (p, q) ∈ Xn and p+ q < n},
with s(fp,q) = (p, q) and r(fp,q) = (p, q + 1). We draw En and Fn using coloured arrows (blue and
solid for E, red and dashed for F ).

E3

(0, 0) (3, 0)

(0, 3)

e0,0 e1,0 e2,0

e0,1 e1,1

e0,2

F3

(0, 0) (3, 0)

(0, 3)

f0,0

f0,1

f0,2

f1,0

f1,1

f2,0

Let Fn := F ∗
n and En := E∗

n denote the path categories of Fn and En, respectively.

Lemma 3.23. The subcategory {((p, q), (p′, q)) | p ≤ p′ ≤ n, q ≤ n} of Γn is isomorphic to En and
the subcategory {((p, q), (p, q′)) | p ≤ n, n ≥ q ≥ q′} is isomorphic to Fn. Moreover, [Fn, En] is a
strict factorisation system for Γn; the pair (En,Fn) is a matched pair, with

ep,q ⊲ fp+1,q−1 = fp,q−1 and ep,q ⊳ fp+1,q−1 = ep,q−1;

and Γn
∼= En ⊲⊳ Fn.

Proof. Since En is freely generated by En, the map ep,q 7→ ((p, q), (p + 1, q)) identifies En with
{((p, q), (p′, q)) | p ≤ p′}. Similarly, Fn

∼= {((p, q), (p, q′)) | q ≥ q′} via fp,q 7→ ((p, q + 1), (p, q)).
Both En and Fn are clearly wide subcategories. For each (a,b) ∈ Γn, α := ((aL, aR), (aL, bR)) and

β := ((aL, bR), (bL, bR)) are the unique elements of Fn and En, respectively such that (a,b) = αβ.
So [Fn, En] is a strict factorisation system for Γn.

The remaining statements follow from Proposition 3.13. �

Definition 3.24. We refer to the matched pairs (En,Fn) as model matched pairs.

Each Γn can be visualised as a commuting diagram incorporating both En and Fn.

Γ0

(0, 0)

Γ1

(0, 0) (1, 0)

(0, 1)

e0,0

f0,0

Γ2

(0, 0) (2, 0)

(0, 2)

e0,0 e1,0

e0,1

f0,0

f0,1

f1,0

Γ3

(0, 0) (3, 0)

(0, 3)

e0,0 e1,0 e2,0

e0,1 e1,1

e0,2

f0,0

f0,1

f0,2

f1,0

f1,1

f2,0

(3.7)

For each n, we draw En and Fn on the same vertex set. Each picture in (3.7) is a commuting
diagram in the corresponding Γn. A morphism (a,b) ∈ Γn is equal to the composition of any of
the paths in (3.7) from the vertex at b to the one at a.

The matched pairs (En,Fn) are—in the following sense—free in the category MP.
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Lemma 3.25. Let (C,D) be a matched pair. For every γ = (d0c0, . . . , dn−1cn−1) ∈ (C ⊲⊳ D)n, there
is a unique matched pair morphism hγ : (En,Fn)→ (C,D) such that for all 0 ≤ k < n,

hL
γ (ek,n−1−k) = ck and hR

γ (fk,n−1−k) = dk. (3.8)

Moreover, every matched pair morphism (En,Fn)→ (C,D) is of this form.

Proof. For each 0 ≤ k < n let dk,n−1−k := dk and ck,n−1−k := ck, and for each 0 ≤ p + q < n − 1
define dp,q ∈ D and cp,q ∈ C inductively by dp,q := cp,q+1 ⊲ dp+1,q and cp,q := cp,q+1 ⊳ dp+1,q. Since En

is freely generated by edges, there is a unique functor hL
γ : En → C satisfying hL

γ (ep,q) = cp,q for all

0 ≤ p + q < n. Similarly there is a unique functor hR
γ : Fn → D satisfying hR

γ (fp,q) = dp,q. Since

dp,qcp,q = cp,q+1dp+1,q, it follows that hγ = (hL
γ , h

R
γ ) is a morphism of matched pairs.

For uniqueness, fix a matched pair morphism h : (En,Fn)→ (C,D). Then hL(ep,q) = hL(ep,q+1 ⊳
fp+1,q) = hL(ep,q+1) ⊳ h

R(fp+1,q) and similarly hR(fp,q) = hL(ep,q+1) ⊲ h
R(fp+1,q). Since hL : En →

C and hR : Fn → D are functors, hL and hR are determined by the values hL(ek,n−1−k) and
hR(fk,n−1−k) for 0 ≤ k < n. So hγ is uniquely determined by (3.8). �

Corollary 3.10 says that hγ is the unique functor Γn → C ⊲⊳ D such that hγ(fk,n−1−kek,n−1−k) =
dkck for all 0 ≤ k < n.

3.4. Further examples.

3.4.1. k-graphs. Here we describe k-graphs [KP00] using matched pairs. The generalisations of
higher-rank graphs of [LawV22] also fit into our framework, but we do not discuss them here.

Definition 3.26. A k-graph is a countable category Λ together with a functor d : Λ→ Nk, called
the degree map, which satisfies the following factorisation property: if d(λ) = m + n, then there
exist unique elements µ, ν ∈ Λ such that λ = µν, d(µ) = m and d(ν) = n. For each n ∈ Nk, we
define Λn := d−1(n).

We show that every (k1 + k2)-graph is a Zappa–Szép product of a k1-graph and a k2-graph.

Lemma 3.27. Fix k1, k2 ∈ N and let Σ be a (k1 + k2)-graph. Let Λ := d−1(Nk1 × {0}) regarded as
a k1-graph, and let Γ := d−1({0} × Nk2) regarded as a k2-graph. There are unique actions ⊲ of Λ
on Γ and ⊳ of Γ on Λ such that λγ = (λ ⊲ γ)(λ ⊳ γ) in Σ for all composable pairs (λ, γ) ∈ Λ ∗ Γ.
These make (Λ,Γ, ⊲, ⊳) a matched pair, and (γ, λ) 7→ γλ is an isomorphism Λ ⊲⊳ Γ→ Σ. We have
d(λ ⊲ γ) = d(γ) and d(λ ⊳ γ) = d(λ) for all λ, γ.

Proof. Everything except the final statement follows the factorisation property and Proposi-
tion 3.13. The final statement follows from the factorisation property. �

We now describe a converse to Lemma 3.27. An edge in a k-graph is a path e such that d(e) is
a standard generator of Nk. We write E(Λ) for the set of edges of Λ. Let Σ,Λ,Γ, ⊲ and ⊳ be as in
Lemma 3.27, and write dΛ : Λ→ Nk1 and dΓ : Γ→ Nk2 for the degree functors. Then

(K1) s(ν ⊲ µ) = r(ν ⊳ µ) for all (ν, µ) ∈ E(Λ) ∗ E(Γ);

(K2) ν1ν2 ⊳ µ = (ν1 ⊳ (ν2 ⊲ µ))(ν2 ⊳ µ) for all (ν1, ν2, µ) ∈ E(Λ) ∗ E(Λ) ∗ E(Γ),

(K3) ν ⊲ µ1µ2 = (ν ⊲ µ1)((ν ⊳ µ1) ⊲ µ2) for all (ν, µ1, µ2) ∈ E(Λ) ∗ E(Γ) ∗ E(Γ),

(K4) dΓ(ν ⊲ µ) = dΓ(µ) and dΛ(ν ⊳ µ) = dΛ(ν) for all (ν, µ) ∈ E(Λ) ∗ E(Γ), and

(K5) for each (µ, ν) ∈ E(Γ) ∗ E(Λ) there exists a unique µ′ ∈ E(Γ) and ν ′ ∈ E(Λ) such that
µ = ν ′ ⊲ µ′ and ν = ν ′ ⊳ µ′.



HOMOLOGY FOR SELF-SIMILAR ACTIONS AND ZAPPA–SZÉP PRODUCTS 15

Lemma 3.28. Let Λ be a k1-graph and let Γ be a k2-graph such that Λ0 = Γ0. Suppose that
⊲ : Λ ∗ Γ → Γ and ⊳ : Λ ∗ Γ → Γ are actions satisfying (K1)–(K5). Then (Λ,Γ) is a matched
pair, and the map d : Λ ⊲⊳ Γ → Nk1+k2 given by d(γ, λ) = (dΛ(λ), dΓ(γ)) makes Λ ⊲⊳ Γ into a
(k1 + k2)-graph.

Proof. Let E be directed graph with edges E1 = E(Λ) ⊔ E(Γ), vertices E0 = Λ0 = Γ0 and range
and source maps inherited from Λ and Γ. Define c : E1 → {1, . . . , k1 + k2} by c(α) = i if α ∈ Λei

and c(α) = k1 + j if α ∈ Γej , which we regard as a colouring of E1 by k1 + k2 colours. Define a
collection of squares in the sense of [HRSW13, LarV22] by αβ ∼ β ′α′ if

• αβ = β ′α′ in one of Λ or Γ, or
• α ∈ E(Λ) and β ∈ E(Γ) and α ⊲ β = β ′ and α ⊳ β = α′, or
• α ∈ E(Γ) and β ∈ E(Λ) and α′ ⊲ β ′ = β and α′ ⊳ β ′ = α.

The factorisation properties and (K5) ensure that this is a complete collection of squares.
We claim that this is an associative collection of squares. For this we must check that if α, β, γ ∈

E1 are composable and of distinct colours, and if

αβ ∼ β1α1, α1γ ∼ γ1α2, and β1γ1 ∼ γ2β2; and

βγ ∼ γ1β1, αγ1 ∼ γ2α1, and α1β1 ∼ β2α2;

then α2 = α2, β2 = β2 and γ2 = γ2.
If α, β, γ all belong to either Λ or Γ, this follows from associativity of composition, so we just

need to consider when this is not the case. We treat the case where α ∈ Λ and β, γ ∈ Γ; the
calculations for the other cases are similarly straightforward. We have

β1 = α ⊲ β, α1 = α ⊳ β, γ1 = α1 ⊲ γ, α2 = α1 ⊳ γ, and β1γ1 = γ2β2 in Γ.

That is, γ2β2 = (α ⊲ β)((α ⊳ β) ⊲ γ) = α ⊲ (βγ), and α2 = (α ⊳ β) ⊳ γ = α ⊳ (βγ). Similarly,

βγ = γ1β1, γ2 = α ⊲ γ1, α1 = α ⊳ γ1, β2 = α1 ⊲ β1, and α2 = α1 ⊳ β1.

That is, γ2β2 = α⊲(γ1β1) = α⊲(βγ), and α2 = (α⊳γ1)⊳β1 = α⊳(γ1β1) = α⊳(βγ). So γ2β2 = γ2β2

forcing γ2 = γ2 and β2 = β2 by uniqueness of factorisations in Γ, and α2 = α2.
By [HRSW13, Theorem 4.4] there is a unique (k1 +k2)-graph Σ with skeleton E and the specified

factorisation rules. Lemma 3.27, yields a k1-graph Λ′ and a k2-graph Γ′ such that Σ ∼= Λ′ ⊲⊳ Γ′.
By construction, Λ′ has the same skeleton and factorisation rules as Λ so they are isomorphic by
[HRSW13, Theorem 4.5] (see also [LarV22]), and likewise Γ′ ∼= Γ. These isomorphisms intertwine
the actions of Λ′ and Γ′ on one another with those of Λ and Γ. �

Taken together, Lemmas 3.27 and 3.28 prove the following.

Proposition 3.29. Let Γ be a k1-graph and let Λ be a k2-graph with actions ⊲ : Λ ∗ Γ → Γ and
⊳ : Λ∗Γ→ Γ satisfying (K1)–(K5). The Zappa–Szép product Λ ⊲⊳ Γ is a (k1 +k2)-graph. Moreover,
every (k1+k2)-graph Π is isomorphic to the Zappa–Szép product of the k1-graph Λ = d−1(Nk+1×{0})
and the k2-graph Γ = d−1({0} ×Nk2) with actions satisfying (K1)–(K5).

3.4.2. Self-similar actions. We discuss self-similar actions of groupoids on k-graphs as in [ABRW19].
These include self-similar actions of groupoids and of groups on graphs as in [Nek05, EP17,
LRRW14, LRRW18]. We show that each such self-similar action determines a matched pair in
which the left action respects the degree map. Later we will study C∗-algebras associated to
such matched pairs; the framework of matched pairs allows us to dispense with the faithfulness
condition traditionally imposed in the study of self-similar actions.
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Recall that an edge in a k-graph is a path f with d(f) = ei for some i ≤ k.

Definition 3.30 ([LRRW18, Definition 3.3]). Let Λ be a k-graph and let G be a groupoid with
G0 = Λ0. A faithful self-similar action of G on Λ is a left action · : G ∗ Λ→ Λ of G on Λ such that

(SSA1) for each n ∈ Nk and g ∈ G, we have g · (s(g)Λn) = r(g)Λn, and

(SSA2) s(g1) = s(g2) and g1 · µ = g2 · µ for all µ ∈ s(g1)Λ, then g1 = g2.

(SSA3) for every g ∈ G and every edge e ∈ s(g)Λ there exists h ∈ s(e)G such that g · (eµ) =
(g · e)(h · µ) for all µ ∈ s(e)Λ.

Remark 3.31. If G acts self-similarly on Λ then (SSA2) implies that there is a unique h satisfying
(SSA3). We denote this element by g|e and call it the restriction of g to µ.

As discussed immediately after Definition 3.3 in [ABRW19], the map g 7→ g|e extends to a map
(g, µ) 7→ g|µ from G ∗ Λ to Λ by the recursive formula g|eµ = (g|e)|(g|e)·µ

.

Proposition 3.32. Let Λ be a k-graph and G a groupoid with G0 = Λ0. Suppose that · : G ∗Λ→ Λ
is a faithful self-similar action. Define ⊲ : G∗Λ→ Λ by g⊲µ = g ·µ and ⊳ : G∗Λ→ G by g⊳µ = g|µ.

Then (G,Λ, ⊲, ⊳) is a matched pair such that

(i) if g1 ⊲ µ = g2 ⊲ µ for all µ ∈ s(g1)Λ, then g1 = g2, and

(ii) d(g ⊲ µ) = d(µ) for all (g, µ) ∈ G ∗ Λ.

Conversely, if (G,Λ, ⊲, ⊳) is a matched pair satisfying (i) and (ii), then ⊲ defines a faithful self-
similar action of G on Λ with restriction map g|µ := g ⊳ µ.

Proof. First suppose that · : G ∗Λ→ Λ is a faithful self-similar action. That d(g ⊲ µ) = d(µ) for all
(g, µ) ∈ G ∗ Λ follows from (SSA1), and [ABRW19, Lemma 3.4] implies that (G,Λ) is a matched
pair. Condition (i) follows from (SSA2).

Conversely, suppose that (G,Λ) is a matched pair satisfying (i) and (ii). Then for each g ∈ G and
each edge e ∈ s(g)Λ, the element h := g ⊲ µ satisfies (SSA3). The condition (MP2) gives (SSA3).
That d(g⊲µ) = d(µ) for all (g, µ) ∈ G∗Λ implies that g⊲· restricts to a map g⊲· : s(g)Λn → r(g)Λn.
Invertibility of g implies that these maps are bijective, giving (SSA1). Condition (i) implies
(SSA2). �

Motivated by Proposition 3.32 we introduce a generalisation of the faithful self-similar actions
of [ABRW19] (this is related to the definition in [LY21]).

Definition 3.33. A self-similar action of a groupoid on a k-graph is a matched pair (G,Λ) in
which G is a groupoid, Λ is a k-graph, and d(g ⊲ µ) = d(µ) for all (g, µ) ∈ G ∗ Λ.

Example 3.34. Let E = (E0, E1, r, s) be a directed graph as in Section 2. Then E∗ is a 1-graph with
degree map given by the length functor. Moreover, every 1-graph is of this form. The definition
of a faithful self-similar action of G on E∗ as above reduces to the definition of a self-similar
action of a groupoid on a graph in [LRRW18]. This in turn generalises the self-similar groups of
automorphisms of trees discussed in, for example, [Nek05] (these correspond to the case where E
has just one vertex). The definitions in [EP17] and [Yus23], which do not impose a faithfulness
condition, are also instances Definition 3.33 with k = 1.

3.4.3. Graphs of groups and group actions on trees. An undirected graph Γ = (Γ0,Γ1, r, s, · ) is a
directed graph endowed with a map · : Γ1 → Γ1 such that e = e 6= e and r(e) = s(e) for all e.
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Definition 3.35. A graph of groups is a pair (Γ, G) consisting of: an undirected graph Γ; assign-
ments v 7→ Gv and e 7→ Ge of a group to each v ∈ Γ0 and e ∈ Γ1, such that Ge = Ge for all e ∈ Γ1;
and injective homomorphisms αe : Ge → Gr(e) for each e ∈ Γ1.

The Bass–Serre Theorem [Bas93, Ser80] describes a duality between graphs of groups and edge-
reversal-free actions of groups on trees.

Building on the observations of [MR21, Theorem 5.4], we show that every graph of groups (Γ, G)
gives rise to a matched pair. For each e ∈ Γ1, let Σe be a complete set of coset representatives
for Gr(e)/αe(Ge). We assume that 1Gr(e)

∈ Σe so 1Gr(e)
is the representative of the coset αe(Ge).

There is a natural action of Gr(e) on Σe: we define g · µ to be the coset representative of gµ for all
g ∈ Gr(e) and µ ∈ Σe.

Consider the groupoid G =
⊔

e∈Γ1 Ge, a bundle of groups over Γ1. Define a directed graph E by
E0 := Γ1,

E1 := {eµf | µ ∈ Σe, ef ∈ Γ2, e = f =⇒ µ 6= 1Gr(e)
},

r(eµf) = e, and s(eµf) = f . We identify each En with

{e0µ1e1µ2e2 · · ·µnen | µi ∈ Σei
, e0 . . . en ∈ Γn+1, ei−1 = ei =⇒ µi 6= 1r(ei)}.

Consider the path category E∗ of E. We show that (G, E∗) can be made into matched pair (indeed,
a self-similar groupoid action as in Example 3.34).

Fix ef ∈ Γ2, g ∈ Ge and µ ∈ Σf . Then g ◮ µ := αe(g) · µ ∈ Σf and g ◭ µ := α−1
f ((g ◮

µ)−1αe(g)µ) ∈ Gf are the unique elements such that αe(g)µ = (g ◮ µ)αf(g ◭ µ).
As in the proof of Proposition 3.13, for g1, g2 ∈ Ge, we have (g1g2) ◮ µ = g1 · (g2 ◮ µ) and

(g1g2) ◭ µ = (g1 ◭ (g2 ◮ µ))(g2 ◭ µ). We define a left action ⊲ : G ∗ E∗ → E∗ inductively by

g ⊲ e0µ1e1µ2e2 · · ·µnen = (e0(g ◮ µ1)e1)((g ◭ µ1) ⊲ e1µ2e2 · · ·µnen),

and a right action ⊳ : G ∗ E∗ → G inductively by

g ⊳ e0µ1e1µ2e2 · · ·µnen = (g ◭ µ1) ⊳ e1µ2e2 · · ·µnen.

It is straightforward to verify that these actions turn (G, E∗) into a matched pair. Moreover, ⊲, ⊳
satisfy (SSA1)–(SSA3) so G acts self-similarly on E∗.

4. Three homology theories for matched pairs

We describe three homology theories associated to a matched pair (the last two via a double
complex). We show in Section 5 that they all coincide up to natural isomorphism.

4.1. The categorical complex and categorical homology.

Definition 4.1. Let C be a small category. For each k ≥ 0 let Ck(C) := ZCk be the free abelian
group generated by composable k-tuples. We write [c0, . . . , ck] ∈ Ck+1(C) for the generator corre-
sponding to (c0, . . . , ck) ∈ Ck+1. For k ≥ 1 define dk : Ck+1(C)→ Ck(C) by

dk[c0, . . . , ck] = [c1, . . . , ck] +
( k∑

i=1

(−1)i[c0, . . . , ci−1ci, . . . , ck]
)

+ (−1)k+1[c0, . . . , ck−1]

and define d0 : C1(C) → C0(C) by d0[c] = [s(c)]− [r(c)]. Then (C•(C), d•) is a chain complex, and
its homology, H•(C), is called the categorical homology of C.
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For an abelian group A, let Ck(C;A) := Hom(Ck(C), A). Define dk : Ck(C;A) → Ck+1(C;A) by
dk(f) = f ◦ dk. Then (C•(C;A), d•) is a cochain complex, and its cohomology, H•(C;A), is called
the categorical cohomology of C with coefficients in A.

There are more-sophisticated definitions of categorical cohomology in terms of projective reso-
lutions of C-modules (cf. [GK18]). Our definition amounts to fixing a resolution, analogous to the
bar resolution for group homology (cf. [Wei94, §6.5]), of a constant functor C → A (see [GK18,
Proposition 2.4])

Definition 4.2. The categorical homology, denoted H⊲⊳
• (C,D), of a matched pair (C,D) is the

categorical homology of the Zappa–Szép product category C ⊲⊳ D. For each k ≥ 0, H⊲⊳
k : MP→ Ab

is functor defined by the composition (C,D) 7→ C ⊲⊳ D 7→ Hk(C ⊲⊳ D).
For an abelian group A, the categorical cohomology of (C,D) with coefficients in A, denoted

H•
⊲⊳(C,D;A), is the categorical cohomology of C ⊲⊳ D with coefficients in A.

We work with simplicial groups rather than chain complexes (see [Wei94, Ch.8]) to simplify
calculations. The Dold–Kan Theorem [Wei94, Theorem 8.4.1] gives an equivalence of categories
between simplicial abelian groups and chain complexes of abelian groups.

For each k ≥ 1 and 0 ≤ i ≤ k + 1 we define the face map ∂i
k : Ck+1(C)→ Ck(C) by

∂i
k[c0, . . . , ci, . . . , ck] =





[c1, . . . , ck] if i = 0

[c0, . . . , ci−1ci, . . . , ck] if 1 ≤ i ≤ k

[c0, . . . , ck−1] if i = k + 1.

(4.1)

We also define ∂0
0 [c] = [s(c)] and ∂1

0 [c] = [r(c)]. In particular, dk =
∑k+1

i=0 (−1)k∂i
k.

To work with degeneracy maps, we use the following—slightly non-standard—notation.

Notation 4.3. If (c1, . . . , ck) ∈ Ck is a composable k-tuple, and 0 ≤ i ≤ k, then we define

(c1, . . . , ci−1,_, ci+1, . . . , ck) := (c1, . . . , ci−1, s(ci−1), ci+1, . . . , ck)

= (c1, . . . , ci−1, r(ci+1), ci+1, . . . , ck) ∈ Ck−1.

The identity morphism represented by any given instance of _ is determined by either of the
neighbouring entries.

For each k ≥ 1 and 0 ≤ i ≤ k we define the degeneracy map σi
k : Ck(C)→ Ck+1(C) by

σi
k[c0, . . . , ck−1] =





[_, c0, . . . , ck−1] if i = 0,

[c0, . . . , ci−1,_, ci, . . . , ck−1] if 0 < i < k,

[c0, . . . , ck−1,_] if i = k,

with σ0
0[x] = [x] for x ∈ C0. These and the ∂i

j satisfy the simplicial identities:

∂i
k−1∂

j
k = ∂j−1

k−1∂
i
k if i < j

σi
k+1σ

j
k = σj+1

k+1σ
i
k if i ≤ j, and

∂i
kσ

j
k =





σj−1
k ∂i

k if i < j

idCk(C) if i = j or i = j + 1

σj
k∂

i−1
k if i > j + 1,

so (C•(C), ∂, σ) is a simplicial abelian group.
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If (C,D) is a matched pair, then Proposition 3.20 gives an action of C on each Dk+1. For
(c, d) ∈ C ∗Dk+1, we write c ⊲ [d] for the generator [c ⊲ d] of Ck+1(D). Similarly if (c, d) ∈ Ck+1 ∗ D
we write [c] ⊳ d for the generator [c ⊳ d].

Lemma 4.4. Let (C,D) be a matched pair and take k ∈ N. For 0 < i ≤ k + 1 and for (c, d) ∈
C ∗ Dk+1, we have ∂i

k(c ⊲ [d]) = c ⊲ ∂i
k[d] in Ck(D). Similarly, for 0 ≤ j < k + 1 ∈ N and

(c, d) ∈ Ck+1 ∗ D, we have ∂j
k([c] ⊳ d) = ∂j

k[c] ⊳ d in Ck(C).

Proof. We prove the first statement; the second follows symmetrically. Since i > 0, we have

c ⊲ ∂i
k[d] = c ⊲ [d0, . . . , didi+1, . . . , dk]

=
[
c ⊲ d0, (c ⊳ d0) ⊲ d1, . . . , (c ⊳ d0 . . . di−1) ⊲ didi+1, . . . , (c ⊳ (d0 . . . dk−1)) ⊲ dk

]

=
[
c ⊲ d0, (c ⊳ d0) ⊲ d1, . . . ,

(
(c ⊳ d0 . . . di−1) ⊲ di

)(
(c ⊳ d0 . . . di) ⊲ di+1

)
,

. . . , (c ⊳ (d0 . . . dk−1)) ⊲ dk

]

= ∂i
k

[
c ⊲ d0, (c ⊳ d0) ⊲ d1, . . . ,

(
(c ⊳ d0 . . . di−1) ⊲ di),

(
(c ⊳ d0 . . . di) ⊲ di+1

)
,

. . . , (c ⊳ (d0 . . . dk−1)) ⊲ dk

]

= ∂i
k(c ⊲ [d]). �

Remark 4.5. Lemma 4.4 is only valid for i > 0 and j < k + 1. The left action of C on Dk+1 does
not commute with ∂0

k , and the right action of D on Ck+1 does not commute with ∂k+1
k .

4.2. The matched complex. We associate a double complex to each matched pair (C,D). For
p, q ≥ 0, regard elements of Cp ∗Dq as composable tuples in (C ⊲⊳ D)p+q, whose first p terms belong
to C ⊆ C ⊲⊳ D and whose remaining q terms belong to D ⊆ C ⊲⊳ D.

Let Cp,q(C,D) := Z(Cp ∗ Dq), the free abelian group generated by Cp ∗ Dq. Let ⊲ be the action
of C on Dq of Lemma 3.19. Define horizontal face maps ∂h,i

p,q : Cp+1,q(C,D)→ Cp,q(C,D) as follows.
For q ≥ 1,

∂h,i
p,q[c0, . . . , cp, d0, . . . , dq−1] =





[c1, . . . , cp, d0, . . . , dq−1] if i = 0

[c0, . . . , ci−1ci, . . . , cp, d0, . . . , dq−1] if 1 ≤ i ≤ p

[c0, . . . , cp−1, cp ⊲ (d0, . . . , dq−1)] if i = p+ 1,

while ∂h,i
p,0 := ∂i

p : Cp+1(C) → Cp(C) as in (4.1). For 0 ≤ i ≤ p we define the horizontal degeneracy

maps σh,i
p,q : Cp,q(C,D)→ Cp+1,q(C,D) by

σh,i
p,q[c0, . . . , cp−1, d0, . . . , dq−1] = [c0, . . . , ci,_, ci+1, . . . , cp−1, d0, . . . , dq−1].

For each q ≥ 0, the tuple (C•,q(C,D), ∂h
•,q, σ

h
•,q) is a simplicial abelian group.

Let ⊳ be the action of D on C∗ of Lemma 3.19. Define vertical face maps ∂v,j
p,q+1 : Cp,q+1(C,D)→

Cp,q(C,D) as follows. For p > 0,

∂v,j
p,q [c0, . . . , cp−1, d0, . . . , dq] = (−1)p





[(c0, . . . , cp−1) ⊳ d0, d1, . . . , dq] if j = 0

[c0, . . . , cp−1, d0, . . . , dj−1dj, . . . , dq] if 1 ≤ j ≤ q

[c0, . . . , cp−1, d0, . . . , dq−1] if j = q + 1,
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while ∂v,i
0,q := ∂i

q : Cq+1(D) → Cq(D) as in (4.1). For 0 ≤ j ≤ q we define vertical degeneracy maps

σv,j
p,q : Cp,q → Cp,q+1 by

σv,j
p,q [c0, . . . , cp−1, d0, . . . , dq−1] = (−1)p[c0, . . . , cp−1, d0, . . . , dj,_, dj+1, dq−1].

Then (Cp,•(C,D), ∂v
p,•, σ

v
p,•) is also a simplicial abelian group.

For the next result, recall from [Wei94, §8.5] that a bisimplicial abelian group is a quintuple
(C•,•, ∂

h, ∂v, σh, σv) consisting of abelian groups Cp,q and homomorphisms ∂h,i
p,q : Cp+1,q → Cp,q,

σh,i
p,q : Cp,q → Cp+1,q, ∂

v,j
p,q : Cp,q+1 → Cp,q, and σv,j

p,q : Cp,q → Cp,q+1 such that each (Cp,•, ∂
v
p,•, σ

v
p,•) and

each (C•,q, ∂
h
•,q, σ

h
•,q) is a simplicial group, and

∂v,i
p,q∂

h,j
p,q+1 = −∂h,j

p,q ∂
v,i
p+1,q and σv,i

p+1,qσ
h,j
p,q = −σh,j

p,q+1σ
v,i
p,q.

Proposition 4.6. The quintuple (C•,•, ∂
h, ∂v, σh, σv) is a bisimplicial group. Define

dh
p,q =

p+1∑

i=0

(−1)i∂h,i
p,q : Cp+1,q → Cp,q and dv

p,q =
q+1∑

i=0

(−1)i∂v,i
p,q : Cp,q+1 → Cp,q.

Then

C0,2 C1,2 C2,2

C0,1 C1,1 C2,1

C0,0 C1,0 C2,0

dv
0,1 dv

1,1

dh
0,2

dv
2,1

dh
1,2

dv
0,0 dv

1,0

dh
0,1

dv
2,0

dh
1,1

dh
0,0 dh

1,0

(4.2)

is a first-quadrant double chain complex satisfying dhdv = −dvdh.

Proof. Fix p, q ≥ 0 and fix i ≤ p + 1 and j ≤ q + 1. We must show that ∂v,i
p,q∂

h,j
p,q+1 = −∂h,j

p,q ∂
v,i
p+1,q.

Fix [c0, . . . , cp; d0, . . . , dq] ∈ Cp+1,q+1. If i 6= p + 1 or j 6= 0, then ∂v,i
p,q and ∂h,j

p,q+1 concatenate or

delete nonadjacent coordinates, as do ∂h,j
p,q and ∂v,i

p+1,q, and so the factors of (−1)p and (−1)p+1 in

∂v,i
p,q and ∂v,i

p+1,q give the desired anticommutation relation. If i = p+ 1 and j = 0, then

∂v,0
p,q∂

h,p+1
p,q+1 ([c0, . . . , cp; d0, . . . , dq]) = ∂v,0

p,q ([(c0, . . . , cp) ⊳ d0; d1, . . . , dq])

= ∂v,0
p,q ([(c0, . . . , cp−1) ⊳ (cp ⊲ d0), cp ⊳ d0; d1, . . . , dq])

= (−1)p[(c0, . . . , cp−1) ⊳ (cp ⊲ d0); (cp ⊳ d0) ⊲ (d1, . . . , dq)],

and

∂h,p+1
p,q ∂v,0

p+1,q([c0, . . . , cp; d0, . . . , dq]) = (−1)p+1∂v,0
p,q ([c0, . . . , cp−1; cp ⊲ (d0, . . . , dq)])

= (−1)p+1∂v,0
p,q ([c0, . . . , cp−1; cp ⊲ d0, (cp ⊳ d0) ⊲ (d1, . . . , dq)])

= (−1)p+1[(c0, . . . , cp−1) ⊳ (cp ⊲ d0); (cp ⊳ d0) ⊲ (d1, . . . , dq)],

which gives the desired relation. It follows that dvdh = −dhdv.
The anticommutation relation σv,i

p+1,qσ
h,j
p,q = −σh,j

p,q+1σ
v,i
p,q also follows from direct computation.

Routine calculation shows that (4.2) is a first-quadrant double chain complex. �
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Definition 4.7. We call the double chain complex (C•,•(C,D), dh, dv) the matched complex of the
matched pair (C,D).

Lemma 4.8. The assignment C•,• of a matched complex to each matched pair is a functor from
the category MP of matched pairs to the category of double complexes of Abelian groups.

Proof. Matched-pair morphisms intertwine the face and degeneracy maps ∂•,i
p,q and σ•,i

p,q. �

Notation 4.9. For the remainder of the paper we frequently omit the subscripts on face maps,
degeneracy maps and boundary maps. For example, ∂h,i denotes any of the maps ∂h,i

p,q; the values
of p and q should be clear from context.

There are two chain complexes associated to each double complex: the diagonal complex and
the total complex [Wei94, §8.5].

4.3. The diagonal complex and diagonal homology. Let (C•,•(C,D), dh, dv) be the matched
complex of a matched pair (C,D). For each k ≥ 0, let

C∆
k (C,D) := Ck,k(C,D)

and define ∂∆,i
k : C∆

k+1(C,D)→ C∆
k (C,D) and σ∆,i

k : C∆
k (C,D)→ C∆

k+1(C,D) by

∂∆,i
k := ∂h,i

k,k∂
v,i
k+1,k and σ∆,i

k := σv,i
k+1,kσ

h,i
k,k.

Then (C∆
• (C,D), ∂∆, σ∆) is a simplicial group [Wei94, §8.5]. Let d∆

k :=
∑k+1

i=0 (−1)i∂∆,i
k .

Definition 4.10. The diagonal complex of (C,D) is the chain complex (C∆
• (C,D), d∆

• ). We denote
the homology of this chain complex by H∆

• (C,D).

4.4. The total complex and total homology. Let (C•,•(C,D), dh, dv) be the matched complex
of a matched pair (C,D). For each k ≥ 0, let

CTot
k (C,D) :=

⊕

p+q=k

Cp,q(C,D).

Define dTot
k : CTot

k+1(C,D)→ CTot
k (C,D) by dTot

k := dv
k + dh

k .

Definition 4.11. The total complex of (C,D) is the chain complex (CTot
• (C,D), dTot

• ). We denote
the homology of this complex by HTot

• (C,D).

5. Equivalence of homology theories

In this section we prove that the homology theories for matched pairs introduced in Subsec-
tions 4.1, 4.3, and 4.4 coincide. Specifically, we describe natural chain maps that induce isomor-
phisms between them and between the dual cohomology theories. We also give formulae for their
inverses. The main result is Theorem 5.3. We start by defining the maps involved.

5.1. The natural chain maps. We begin by describing explicit formulae for natural chain maps
∇ : CTot

• → C∆
• , Π: C∆

• → C⊲⊳
• , and Ψ: C⊲⊳

• → CTot
• .
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5.1.1. The map ∇. The map ∇ : CTot
• → C∆

• is the Eilenberg–Zilber map [Wei94, § 8.5.4]. For
p, q ∈ N a (p, q)-shuffle is a permutation β of {1, . . . , p+ q} such that

β(1) < β(2) < · · · < β(p) and β(p+ 1) < β(p+ 2) < · · · < β(p+ q).

We write Sh(p, q) for the collection of all (p, q)-shuffles, and sgn(β) for the sign of a permutation
β. The (p, q)-component ∇p,q : Cp,q → C∆

p+q of the Eilenberg–Zilber map is

∇p,q =
∑

β∈Sh(p,q)

sgn(β) σ
h,β(p+q)
p+q−1,p+q ◦ · · · ◦ σ

h,β(p+1)
p,p+q ◦ σ

v,β(p)
p,p+q−1 ◦ · · · ◦ σ

v,β(1)
p,q . (5.1)

5.1.2. The map Π. We describe Π: C∆
• → C⊲⊳

• . For k ≥ 1 define ⊲⊳k : (C ∗ D)k → (D ∗ C)k by

⊲⊳k (c1, d1, . . . , ck, dk) := (c1 ⊲⊳ d1, . . . , ck ⊲⊳ dk).

Set Π0 = idC0 and inductively define Πk : Ck ∗ Dk → (C ⊲⊳ D)k = (D ∗ C)k for k ≥ 1 by

Πk := ⊲⊳k ◦(1C ∗ Πk−1 ∗ 1D). (5.2)

These extend to homomorphisms Πk : C∆
k (C,D)→ C⊲⊳

k (C,D). For example,

Π1[c1, d1] = [c1 ⊲ d1, c1 ⊳ d1]

Π2[c1, c2, d1, d2] = [c1c2 ⊲ d1, c1 ⊳ (c2 ⊲ d1), (c2 ⊳ d1) ⊲ d2, c2 ⊳ d1d2]

Π3[c1, c2, c3, d1, d2, d3] = [c1c2c3 ⊲ d1, c1 ⊳ (c2c3 ⊲ d1), (c2c3 ⊳ d1) ⊲ d2,

c2 ⊳ (c3 ⊲ d1d2), (c3 ⊳ d1d2) ⊲ d3, c3 ⊳ d1d2d3].

An induction on k, using that matched-pair morphisms respect left and right actions, shows that
the Πk extend to natural transformations Πk : C∆

k → C⊲⊳
k .

Remark 5.1. The map Πk can be described diagrammatically. We represent elements of C by blue
vertices, and elements of D by red vertices; vertical lines are identity morphisms; and crossings are
applications of ⊲⊳:

[c1, c2, c3, d1, d2, d3]

[c1, c2, c3 ⊲ d1, c3 ⊳ d1, d2, d3]

[c1, c2c3 ⊲ d1, c2 ⊳ (c3 ⊲ d1), (c3 ⊳ d1) ⊲ d2, c3 ⊳ d1d2, d3]

Π3[c1, c2, c3, d1, d2, d3].

So starting with an element of Ck ∗Dk, we apply ⊲⊳ to pairs of adjacent terms wherever possible
until we obtain an element of (D ∗ C)k.

5.1.3. The map Ψ. We now define Ψ: C⊲⊳
• → CTot

• . For q ≥ 0 define τ q : (D ⊲⊳ C)q → Dq ∗
Cq as follows: regard (d1c1, . . . , dqcq) ∈ (D ⊲⊳ C)q as a composable q-tuple in C∗ ⊲⊳ D∗. By
Proposition 3.20 there exist unique d′ ∈ Dq and c′ ∈ Cq such that (d1c1) · · · (dqcq) = d′c′ ∈ Cp ⊲⊳ Dq.
For instance,

(d1c1)(d2c2)(d3c3) = (d1, c1 ⊲ d2, ((c1 ⊳ d2)c2) ⊲ d3, c1 ⊳ (d2(c2 ⊲ d3)), c2 ⊳ d3, c3) ∈ D
3 ∗ C3.

We define τ q(d1c1, . . . , dqcq) := (d′, c′).

Remark 5.2. We can describe τ q via a diagram using the same conventions as in Remark 5.1. For
example τ 3 is represented by the diagram
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(d1, c1, d2, c2, d3, c3)

(d1, c1 ⊲ d2, c1 ⊳ d2, c2 ⊲ d3, c2 ⊳ d3, c3)

(d1, c1 ⊲ d2, ((c1 ⊳ d2)c2) ⊲ d3, c1 ⊳ (d2(c2 ⊲ d3)), c2 ⊳ d3, c3)
The maps τ q for q ≥ 3 can be visualised similarly.

For p, q ≥ 0 let ρp,q : Dp ∗ Cp ∗ Dq ∗ Cq → Cp ∗ Dq denote the projection onto the middle two
factors. Define Ψp,q : (C ⊲⊳ D)p+q → Cp ∗ Dq by

Ψp,q = ρp,q ◦ (τp ∗ τq)

and extend it to a homomorphism Ψp,q : C⊲⊳
p+q(C,D) → Cp,q(C,D). For example, we can represent

Ψ3,2[d1, c1, . . . , d5, c5] diagrammatically by

[d1, c1, . . . , d5, c5]

(τ 3 ∗ τ 2)([d1, c1, . . . , d5, c5])

Ψ3,2([d1, c1, . . . , d5, c5])

(crossed vertices like indicate omission of the corresponding entries).
We now define Ψk : C⊲⊳

k (C,D)→ CTot
k (C,D) by

Ψk =
∑

p+q=k

Ψp,q. (5.3)

Explicit formulae for low-degree terms are given by

Ψ1[d1c1] = Ψ1,0[d1c1] + Ψ0,1[d1c1] = [c1] + [d1]

Ψ2[d1c1, d2c2] = [c1 ⊳ d2, c2] + [c1; d2] + [d1, c1 ⊲ d2]

Ψ3[d1c1, d2c2, d3c3] = [d1, c1 ⊲ d2, ((c1 ⊳ d2)c2) ⊲ d3] + [c1; d2, c2 ⊲ d3]

+ [c1 ⊳ d2, c2; d3] + [c1 ⊳ (d2(c2 ⊲ d3)), c2 ⊳ d3, c3].

It is routine to verify that the Ψk extend to natural transformations Ψk : C⊲⊳
k → CTot

k .

5.2. The statement of the main theorem. We state our main homology theorem and outline
the proof. We write Ch• for the category of abelian chain complexes and chain maps.

Theorem 5.3. The formulae (5.1), (5.2), and (5.3) determine natural chain equivalences such
that the diagram

C∆
• CTot

•

C⊲⊳
•

∇

Π Ψ (5.4)

commutes up to natural chain homotopy. They induce natural isomorphisms

H⊲⊳
•
∼= H∆

•
∼= HTot

•

of functors from MP to Ch•. In particular, for any matched pair (C,D),

H⊲⊳
k (C,D) ∼= H∆

k (C,D) ∼= HTot
k (C,D).
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Before commencing the proof of this theorem, we record a corollary. Recall that for us, given
a chain complex (C•, d•) and an abelian group A, the cohomology with coefficients in A is the
cohomology of the dual cochain complex (Hom(C•, A), d∗

•).

Corollary 5.4. For any fixed abelian group A, the duals of the natural chain maps ∇, Π, and Ψ
induce natural isomorphisms

H•
⊲⊳( · ;A) ∼= H•

∆( · ;A) ∼= H•
Tot( · ;A)

of cohomology functors with coefficients in A.

Proof. Dualising all the maps in a chain homotopy diagram yields a cochain homotopy. �

That ∇ induces a natural isomorphism is the content of a general form of the Eilenberg–Zilber
Theorem. Following [Wei94, §8.5.4] the Alexander–Whitney map ∆: C∆

• → CTot
• is defined as

follows: for p, q such that p+ q = n, define ∆p,q : C∆
n → Cp,q by

∆p,q := ∂h
p+1 · · ·∂

h
n︸ ︷︷ ︸

q terms

◦ ∂v
0 · · ·∂

v
0︸ ︷︷ ︸

p terms

.

Then the map ∆ is defined by

∆ :=
⊕

p+q=n

∆p,q. (5.5)

Theorem 5.5 ([Wei94, Theorem 8.5.1]). The map ∇ : CTot
• → C∆

• of (5.1) induces a natural
isomorphism H∆

•
∼= HTot

• , with inverse induced by the map ∆: C∆
• → CTot

• of (5.5).

Given Theorem 5.5, to prove Theorem 5.3 it suffices to establish the natural isomorphism H⊲⊳
•
∼=

H∆
• . To do this we fill out a diagram

C∆
• CTot

•

C⊲⊳
•

∆

∇
Π

Π Ψ

Ψ (5.6)

of natural chain equivalences that commutes up to natural chain homotopy. We use the method of
acyclic models (see [Rot88] for instance). The details occupy Subsections 5.3 and 5.4.

We show in Section 5.3 that the model matched pairs (E2k,F2k) satisfy H⊲⊳
p (E2k,F2k) = 0 =

H∆
p (E2k,F2k) for all p ≥ 1. So we can use these as the models in the method of acyclic models.

We deduce that there exist natural chain equivalences between C⊲⊳
• and C∆

• that induce natural
isomorphisms on homology, and show how to recognise when given chain maps do the job.

In Subsection 5.5, we show that (5.2) and (5.3) are such chain maps. We also give explicit
formulae for the remaining maps

Π

:= ∇ ◦Ψ and

Ψ

:= Π ◦ ∇.

5.3. Homological acyclicity of model matched pairs. The proof of Theorem 5.3 hinges on
properties of the homology of the model matched pairs (En,Fn). Recall that the object set of
Γn
∼= En ∗ Fn is Xn = {a = (aL, aR) ∈ N× N | 0 ≤ aL + aR ≤ n}. Each morphism of Γn is a pair

(a,b) ∈ Xn ×Xn such that aL ≤ bL and aR ≥ bR.
The map r × s : Γn → Xn ×Xn is injective. Hence,

Γk
n ∋ (γ1, . . . , γk) 7→ (r(γ1), s(γ1), s(γ2), . . . , s(γk)) ∈ X(k)

n . (5.7)
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is a bijective correspondence between Γk
n and

X(k)
n := {(a0, a1, . . . , ak) | ai ∈ Xn, ai,L ≤ ai+1,L, and ai,R ≥ ai+1,R for all i}.

Since C⊲⊳
k (En,Fn) is the free group ZΓk

n, we have C⊲⊳
k (En,Fn) ∼= ZX(k)

n .
Let 〈a0, . . . , ak〉 denote the generator of ZX(k)

n corresponding to (a0, . . . , ak) ∈ X(k)
n . Using carats

to denote elision of coordinates, the face and degeneracy maps on C⊲⊳
k (En,Fn) are

∂⊲⊳,i
k 〈a0, . . . , ak〉 = 〈a0, . . . , âi, . . . , ak〉 and σ⊲⊳,i

k 〈a0, . . . , ak〉 = 〈a0, . . . , ai, ai, . . . , ak〉.

A chain complex (C•, d•) is acyclic if H0(C•, d•) ∼= Z and Hk(C•, d•) = 0 for k ≥ 1.
Recall that an initial object in a category C is an object v ∈ C0 such that wCv has precisely one

element for each w ∈ C0.
The following is well-known, but could not find an explicit reference.

Lemma 5.6. Let C be a small category with an initial object v. Let 1 be the category with a single
morphism 1. Let ι : 1 → C be the functor such that ι(1) = v. Let ρ be the unique functor from C
to 1. Then ρ ◦ ι = id

1

, and (ι ◦ ρ)• : C•(C) → C•(C) is chain-homotopic to idC•(C). In particular,
(C•(C), d•) is acyclic.

Proof. Clearly, ρ ◦ ι = id
1

. For each w ∈ C0 let τw ∈ C be the unique morphism from v to w. Fix
k ≥ 0. For 0 ≤ i ≤ k define hi : Ck(C)→ Ck+1(C) by

hi[c0, . . . , ck−1] =

{
[c0, . . . , ci, τs(ci), v, . . . , v] if i > 0

[τr(c0), v, . . . , v] if i = 0.

To see that h is a simplicial homotopy we need to check that ∂0h0 = (ι◦ρ)k, that ∂k+1hk = idCk(C),
that ∂ihj = hj−1∂i for i < j, that ∂ihj = hj∂i−1 for i > j + 1, that σihj = hj+1σi for i ≤ j, and
that σihj = hjσi−1 for i > j. For the first two identities, we calculate

∂0h0[c0, . . . , ck−1] = ∂0[τr(c0), v, . . . , v] = [v, . . . , v], and

∂k+1hk[c0, . . . , ck−1] = ∂k+1[c0, . . . , ck−1, τs(ck−1)] = [c0, . . . , ck−1].

The remaining four conditions follow from similar calculations. For example, if 0 < i < j, then

∂ihj[c0, . . . , ck−1] = ∂i[c0, . . . , cj, τs(cj), v, . . . , v] = [c0, . . . , ci−1ci, . . . , cj, τs(cj), v, . . . , v]

= hj−1[c0, . . . , ci−1ci, . . . , cj, . . . , ck−1] = hj−1∂i[c0, . . . , ck−1].

Hence, the simplicial maps (ι ◦ p)• and idC•(C) are simplicially homotopic. So sk :=
∑k

i=0(−1)ihi
k

defines a chain homotopy s between (ι ◦ p)• and idC•(C) [Wei94, Lemma 8.3.13].
The final statement follows from acyclicity of (C•(1), d•). �

Lemma 5.7. For each n ≥ 0 the chain complex (C⊲⊳
• (En,Fn), d) is acyclic.

Proof. The object (n, 0) is an initial object in Γn = En ⊲⊳ Fn, so the result follows from Lemma 5.6.
�

Chains in Ck,l(En,Fn) also admit a tractable description. The formula

Ek
n ∗ F

l
n ∋((p0, q0), (p1, q0), . . . , (pk, q0), . . . , (pk, ql−1), (pk, ql))

7→ (p0, p1, . . . , pk; q0, . . . , ql−1, ql) ∈ Y
(k,l)

n
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is a bijection between Ek
n ∗ F

l
n and

Y (k,l)
n :=

{
(p0, . . . , pk; q0, . . . , ql) ∈ N2k | pi ≤ pi+1, qi ≥ qi+1, and pk + q0 ≤ n

}
,

and induces an isomorphism Ck,l(En,Fn) ∼= ZY (k,l)
n .

We write 〈p0, . . . , pk; q0, . . . , ql〉 for the generator of ZY (k,l)
n that corresponds to the tuple

(p0, . . . , pk; q0, . . . , ql) ∈ Y
(k,l)

n . The face maps in the double complex become

∂h,i〈p0, . . . , pk; q0, . . . , ql〉 = 〈p0, . . . , p̂i, . . . , pk; q0, . . . , ql〉 and

∂v,i〈p0, . . . , pk; q0, . . . , ql〉 = 〈p0, . . . , pk; q0, . . . , q̂i, . . . , ql〉.

The degeneracy maps become

σh,i〈p0, . . . , pk; q0, . . . , ql〉 = 〈p0, . . . , pi−1, pi, pi, pi+1, . . . , pk; q0, . . . , ql〉 and

σv,i〈p0, . . . , pk; q0, . . . , ql〉 = 〈p0, . . . , pk; q0, . . . , qi−1, qi, qi, qi+1, . . . , ql〉.

In particular, for the diagonal complex C∆
• (En,Fn) the face and degeneracy maps are

∂∆,i〈p0, . . . , pk; q0, . . . , qk〉 = 〈p0, . . . , p̂i, . . . , pk; q0, . . . , q̂i, . . . , qk〉 and

σ∆,i〈p0, . . . , pk; q0, . . . , qk〉 = 〈p0, . . . , pi−1, pi, pi, pi+1, . . . , pk; q0, . . . , qi−1, qi, qi, qi+1, . . . , qk〉.

Lemma 5.8. The diagonal complex (C∆
• (En,Fn), d∆) is acyclic.

Proof. Consider the directed graph Gn = 0
e0← 1

e1← · · ·
en−1
← n. Since n is an initial object for

G∗
n, Lemma 5.6 implies that (C•(G

∗
n), d•) is acyclic. So it suffices to show that (C∆

• (En,Fn), d∆) is
chain-homotopic to (C•(G

∗
n), d).

The group Ck(G∗
n) is freely generated by k-tuples 〈p0, . . . , pk〉 where 0 ≤ pi ≤ pi+1 ≤ n for each

0 ≤ i < k. The functor ι : G∗
n →֒ En given by ι(ep) = ep,0 induces a chain map ι : C•(G

∗
n) →

C∆
• (En,Fn) satisfying ιk〈p0, . . . , pk〉 = 〈p0, . . . , pk; 0, . . . , 0〉. The functor ρ : En → G∗

n defined by
ρ(ep,q) = ep, induces a chain map ρ : C∆

• (En,Fn) → C•(G
∗
n) satisfying ρk〈p0, . . . , pk; q0, . . . , qk〉 =

〈p0, . . . , pk〉. We have ρk ◦ ιk = idCk(G∗
n). For 0 ≤ i ≤ k define hi : C∆

k (En,Fn)→ C∆
k+1(En,Fn) by

hi〈p0, . . . , pk; q0, . . . , qk〉 = 〈p0, . . . , pi−1, pi, pi, pi+1, . . . , pk; 0, . . . , 0, qi, qi+1, . . . , qk〉.

Direct calculation shows that ∂0h0 = idC∆
k

(En,Fn) and ∂k+1hk = (ι ◦ ρ)k.

It is routine to check that ∂ihj = hj−1∂i for i < j and ∂ihj = hj∂i−1 for i > j + 1. Similarly,
σihj = hj+1σi for i ≤ j and σihj = hjσi−1 for i > j. It follows that the simplicial maps (ι ◦ p)•

and idC∆
• (En,Fn) are simplicially homotopic. �

We identify some particularly useful chains in the categorical and diagonal homology of
(E2k,F2k). For each k ≥ 0 define xk ∈ C

⊲⊳
k (E2k,F2k) and yk ∈ C

∆
k (E2k,F2k) by

xk := [f0,2ke0,2k, f1,2k−1e1,2k−1, . . . , fk−1,k+1ek−1,k+1] = 〈(0, 2k), (1, 2k − 1), . . . , (k, k)〉 (5.8)

and

yk := [e0,k, e1,k, . . . , ek−1,k; fk,k−1, . . . , fk,1, fk,0] = 〈0, 1, . . . , k − 1, k; k, k − 1, . . . , 1, 0〉. (5.9)
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Pictorially, xk and yk correspond to the following composable tuples in E2k ⊲⊳ F2k:

xk

(0, k)
(k, k)

(0, 2k)

yk

(k, 0)

(0, k)
(k, k)

By Corollary 3.10, a matched pair morphism (En,Fn) → (C,D) corresponds to a functor Γn →
C ⊲⊳ D taking En to C and Fn to D. For each γ = (d0c0, . . . , dk−1ck−1) in (C ⊲⊳ D)k, Lemma 3.25
gives a morphism h⊲⊳

γ : Γ2k → C ⊲⊳ D such that

h⊲⊳
γ (fp,2k−1−pep,2k−1−p) =




dpcp if 0 ≤ p < k

s(ck−1) if k ≤ p < 2k.

For λ = (c0, . . . , ck−1, d0, . . . , dk−1) ∈ C
k ∗ Dk, with d′

i = r(ci) and c′
i = s(di), Lemma 3.25 applied

to (d′
0c0, · · · , d

′
k−1ck−1, d0c

′
0, . . . , dk−1c

′
k−1) yields a morphism h∆

λ : Γ2k → C ⊲⊳ D such that

h∆
λ (fp,2k−1−pep,2k−1−p) =




cp if 0 ≤ p < k

dp−k if k ≤ p < 2k.

Lemma 5.9. Let (C,D) be a matched pair. For γ ∈ (C ⊲⊳ D)k and λ ∈ Ck ∗ Dk we have [γ] =
C⊲⊳

k (h⊲⊳
γ )(xk) and [λ] = C∆

k (h∆
λ )(yk). Moreover,

{C⊲⊳
k (h)(xk) | h : (E2k,F2k)→ (C,D)} and {C∆

k (h)(yk) | h : (E2k,F2k)→ (C,D)}

generate C⊲⊳
k (C,D) and C∆

k (C,D) respectively.

Proof. That [γ] = C⊲⊳
k (h⊲⊳

γ )(xk) and [λ] = C∆
k (h∆

λ )(yk) follow immediately from the definitions of

h⊲⊳
γ and h∆

λ . For the second statement, let h : (E2k,F2k) → (C,D) be a matched pair morphism.
Then C⊲⊳

k (h)(xk) = [h(f0,2ke0,2k), . . . , h(fk−1,k+1ek−1,k+1)]. So

{C⊲⊳
k (h)(xk) | h : (E2k,F2k)→ (C,D)} ⊇ {C⊲⊳

k (h⊲⊳
γ )(xk) | γ ∈ (C ⊲⊳ D)k} = {[γ] | γ ∈ (C ⊲⊳ D)k},

which generates C⊲⊳
k (C,D). Similarly,

{C∆
k (h)(yk) | h : (E2k,F2k)→ (C,D)} ⊇ {[λ] | λ ∈ Ck ∗ Dk}

generates C∆
k (C,D). �

In the terminology of [Rot88, pp. 239–240], Lemma 5.9 says that the functors C⊲⊳
k and C∆

k from
MP to Ch• are free with bases {xk} and {yk}, giving the following lemma.

Lemma 5.10 ([Rot88, Lemma 9.10]). If G : MP → Ab is a functor and g ∈ G(E2k,F2k), then
there is a unique natural transformation α : C⊲⊳

k → G such that α(E2k ,F2k)(xk) = g, and a unique
natural transformation β : C∆

k → G such that β(E2k ,F2k)(yk) = g.



HOMOLOGY FOR SELF-SIMILAR ACTIONS AND ZAPPA–SZÉP PRODUCTS 28

The proof of [Rot88, Lemma 9.10] describes the natural transformations of Lemma 5.10: for
[γ] ∈ C⊲⊳

k (C,D), Lemma 5.9 gives h⊲⊳
γ : (E2k,F2k) → (C,D) such that h⊲⊳

γ (xk) = [γ], and then

α(C,D)([γ]) := G(h⊲⊳
γ )(g). Similarly, β(C,D)([λ]) := G(h∆

λ )(g) for [λ] ∈ C∆
k (C,D).

5.4. Proof of the main theorem. To prove Theorem 5.3 we construct a chain equivalence
between C⊲⊳

• and C∆
• inductively using [Rot88, Theorem 9.12].

Lemma 5.11. The identity map C∆
0 (C,D) := ZX

id
→ ZX =: C⊲⊳

0 (C,D) induces a natural isomor-

phism ĩd : H⊲⊳
0
∼= H∆

0 .

Proof. Fix a matched pair (C,D) with objects X. Identifying C∆
0 (C,D) with C⊲⊳

0 (C,D) via the
identity map on ZX, it suffices to show that im(d⊲⊳) = im(d∆) in ZX. If [d, c] ∈ C⊲⊳

1 (C,D),
then d⊲⊳[d, c] = [s(c)] − [r(d)] = d∆[c, s(c)] + d∆[r(d), d] ∈ im(d∆). If [c, d] ∈ C∆

1 (C,D), then
d∆[c, d] = [s(d)]− [r(c)] = d⊲⊳[c ⊲⊳ d] ∈ im(d⊲⊳). �

Proposition 5.12. There exist natural chain maps α : C⊲⊳
• → C∆

• and β : C∆
• → C⊲⊳

• such that
α ◦ β is naturally chain-homotopic to idC∆

•
and β ◦ α is naturally chain-homotopic to idC⊲⊳

•
such

that α and β lift the natural isomorphism H⊲⊳
0
∼= H∆

0 , in the sense that the diagram

C⊲⊳
2 C⊲⊳

1 C⊲⊳
0 H⊲⊳

0 0

C∆
2 C∆

1 C∆
0 H∆

0 0

C⊲⊳
2 C⊲⊳

1 C⊲⊳
0 H⊲⊳

0 0

d⊲⊳
1 d⊲⊳

0

d∆
1 d∆

0

d⊲⊳
1 d⊲⊳

0

ĩd

ĩd

α0

β0

α1

β1

α2

β2

(5.10)

of natural transformations commutes. If α′ : C⊲⊳
• → C∆

• and β ′ : C∆
• → C⊲⊳

• are chain maps that lift
the natural isomorphism H⊲⊳

0
∼= H∆

0 , then they are naturally chain-homotopic to α and β.
For k ≥ 0, let xk, yk be as in (5.8) and (5.9). If for each k ≥ 0, αk : C∆

k → C⊲⊳
k is a natural

transformation such that d∆ ◦αk(xk) = αk−1 ◦d
∆(xk), then α = (αk) is a natural chain equivalence

from C⊲⊳
• to C∆

• . Similarly, if for each k ≥ 0, βk : C⊲⊳
k → C∆

k is a natural transformations such that
d⊲⊳ ◦ βk(yk) = βk−1 ◦ d

⊲⊳(yk), then β = (βk) is a natural chain equivalence from C∆
• to C⊲⊳

• .

The result is standard and follows from [Rot88, Theorem 9.12], but we include some details to
describe the resulting isomorphisms in homology explicitly.

Proof. The morphisms α0 and β0 are induced by the identity maps on objects. We start by
constructing α. Suppose that there exists maps αn, for n < k such that the right-most n + 1
squares of (5.10) commute. Consider the matched pair (E2k,F2k) and let xk ∈ C

⊲⊳
k (E2k,F2k) be as

in (5.8). Commutativity of (5.10) implies that d∆αk−1d
⊲⊳ = (d∆)2αk−2 = 0. Lemma 5.7 implies

that (C⊲⊳
• (E2k,F2k), d⊲⊳) is acyclic, so there exists xk ∈ C

∆
k (E2k,F2k) such that d∆(xk) = αk−1d

⊲⊳(xk).

So Lemma 5.10 yields a unique natural transformation αk : C⊲⊳
k → C∆

k such that α
(E2k ,F2k)
k (xk) = xk

and d∆αk = αk−1d
⊲⊳.

A similar construction using yk and Lemma 5.8 gives βk. By [Rot88, Theorem 9.12] αk and βk

induce natural chain equivalences α and β and these are, up to natural chain homotopy, the unique
chain equivalences lifting the isomorphism of Lemma 5.11 �

Proof of Theorem 5.3. The result follows from Proposition 5.12 and Theorem 5.5. �



HOMOLOGY FOR SELF-SIMILAR ACTIONS AND ZAPPA–SZÉP PRODUCTS 29

5.5. Explicit formulas for the natural isomorphisms between homology theories. Propo-
sition 5.12 yields a natural isomorphism C∆

•
∼= C⊲⊳

• , and its final statement says how to recognise
chain maps α, β that induce such an isomorphism. We show that the map Π of (5.2) and

Π

:= ∇◦Ψ
are such chain maps, and describe chain maps inducing the remaining arrows in (5.6). We first
examine how Πk behaves on the model matched pairs (Em,Fm).

Lemma 5.13. Fix m, k ≥ 0, and consider Πk : C∆
k (Em,Fm)→ C⊲⊳

k (Em,Fm). Then

Πk〈p0, . . . , pk; q0, . . . , qk〉 = 〈(p0, q0), . . . , (pk, qk)〉.

In particular, the element yk ∈ C
∆
k (E2k,F2k) from (5.9), satisfies

Πk(yk) = [f0,k−1e0,k−1, f1,k−2e1,k−2, . . . , fk−2,1ek−2,1, fk−1,0ek−1,0]. (5.11)

Proof. We begin by establishing (5.11). We proceed by induction on k. The case k = 0 is trivial.
Suppose inductively that the analogue of (5.11) describes Πk−1(yk−1). Recall that

yk = [e0,k, e1,k, . . . , ek−1,k; fk,k−1, . . . , fk,1, fk,0],

and let

λk−1 := [e1,k, . . . , ek−1,k; fk,k−1, . . . , fk,1] ∈ C
∆
k (E2(k−1),F2(k−1)).

By Lemma 5.9 there exists a morphism h∆
λk−1

: (E2(k−1),F2(k−1)) → (E2k,F2k) such that λk−1 =

C∆
k−1(h

∆
λk−1

)(yk−1). The inductive hypothesis gives

(1E2k
∗ Πk−1 ∗ 1F2k

)(yk) = [e0,k, f1,k−1, e1,k−1, f2,k−2, . . . , ek−2,2, fk−1,1, ek−1,1, fk,0],

and applying ⊲⊳k yields (5.11).
For the second statement, let γ = 〈p0, . . . , pk; q0, . . . , qk〉. Lemma 5.9 gives a morphism

h∆
γ : (E2k,F2k) → (Em,Fm) such that C∆

k (h∆
γ )(yk) = γ. Naturality of Πk implies that Πk(γ) =

C⊲⊳
k (h∆

γ ) ◦ Πk(yk). So the result follows from (5.11) and the definition of h∆
γ . �

Proposition 5.14. For k ≥ 0, we have Πk−1 ◦ d
∆(yk) = d⊲⊳ ◦Πk(yk). In particular, Π: C∆

• → C⊲⊳
•

induces a natural isomorphism on homology.

Proof. Fix k ≥ 0. By Lemma 5.13, for each 0 ≤ i ≤ k, we have

Πk−1 ◦ ∂
∆
i (yk) = Πk−1〈0, 1, . . . , î, . . . , k − 1, k; k, k − 1, . . . , k̂ − i, . . . , 1, 0〉

= 〈(0, k), (1, k − 1), . . . , ̂(i, k − i), . . . , (k − 1, 1), (k, 0)〉 = ∂⊲⊳
i ◦ Πk(yk).

A similar calculation gives Πk+1 ◦ σ
∆
i (yk) = σ⊲⊳

i ◦ Πk(yk) and so d⊲⊳ ◦ Πk(yk) = Πk−1 ◦ d
∆(yk). The

final statement follows from Proposition 5.12. �

We next examine how the map Ψ of (5.3) behaves on the model matched pairs.

Lemma 5.15. Fix k, m ≥ 0 and a = 〈a0, . . .ak〉 ∈ C
⊲⊳
k (Em,Fm). We have

Ψk〈a0, . . . , ak〉 =
k∑

i=0

〈aL
0 , . . . , a

L
i ; aR

i , . . . , a
R
k 〉. (5.12)

In particular, xk ∈ C
⊲⊳
k (E2k,F2k) as in (5.8), satisfies

Ψk(xk) =
k∑

i=0

〈0, 1, . . . , i− 1, i; 2k − i, 2k − i− 1, . . . , k + 1, k〉. (5.13)
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Proof. The formula (5.7) gives a bijection between composable q-tuples in Γm = Em ⊲⊳ Fm and the
set X(q)

m . We claim that under this identification, if (a0, . . . , aq) ∈ X
(q)
m , then

τq(a0, . . . , aq) = ((aL
0 , a

R
0 ), . . . , (aL

0 , a
R
q−1), (a

L
0 , a

R
q ), (aL

1 , a
R
q ) . . . , (aL

q , a
R
q )) (5.14)

in Γq
m. The tuples ((aL

0 , a
R
0 ), (aL

0 , a
R
1 ), . . . , (aL

0 , a
R
q )) and ((aL

0 , a
R
q ), . . . , (aL

q−1, a
R
q ), (aL

q , a
R
q )) belong to

Eq
m ⊆ Γq

m and F q
m ⊆ Γq

m. Since r × s : Γm → Xm ×Xm is injective, and factorisation in E∗
m ⊲⊳ F∗

m

is unique by Proposition 3.20, the formula (5.14) follows.
Since Ψp,q = ρp,q◦(τp∗τq) by definition, and Ψk =

∑k
i=0 Ψi,k−i the identity (5.12) holds; and (5.13)

follows from (5.12) since xk = 〈(0, 2k), (1, 2k − 1), . . . , (k, k)〉. �

Proposition 5.16. For k ≥ 0, we have Ψk−1 ◦ d
⊲⊳ = dTot ◦ Ψk. The chain maps Ψ: C⊲⊳

• → CTot
•

and

Π

: C⊲⊳
• → C∆

• are natural chain equivalences inducing isomorphisms in homology.

Proof. Let a = 〈a0, . . . , ak〉 ∈ C
⊲⊳
k (Em,Fm). For each 0 ≤ i ≤ k,

Ψk−1 ◦ ∂
⊲⊳
i (a) =

∑

0≤p<i

〈aL
0 , . . . , a

L
p ; aR

p , . . . , â
R
i , . . . , a

R
k 〉+

∑

i<p≤k

〈aL
0 , . . . , â

L
i , . . . , a

L
p ; aR

0 , . . . , a
R
k 〉

=
∑

0≤p<i

∂v
i−p ◦Ψp,k−p(a) +

∑

i<p≤k

∂h
i ◦Ψp,k−p(a).

Consequently,

Ψk−1 ◦ d
⊲⊳ =

∑

0≤p<i≤k

(−1)i∂v
i−p ◦Ψp,k−p +

∑

0≤i<p≤k

(−1)i∂h
i ◦Ψp,k−p.

Using at the third equality that, ∂v
0 ◦Ψ0,k = 0 and ∂h

k ◦Ψk,0 = 0, we calculate:

dTot ◦Ψk =
k∑

p=0




k−p∑

i=0

(−1)i+p∂v
i ◦Ψp,k−p +

p∑

i=0

(−1)i∂h
i ◦Ψp,k−p




=
∑

0≤p<i≤k

(−1)i∂v
i−p ◦Ψp,k−p +

∑

0≤i<p≤k

(−1)i∂h
i ◦Ψp,k−p

+
k∑

p=0

(−1)p∂v
0 ◦Ψp,k−p + (−1)p∂h

p ◦Ψp,k−p

= Ψk−1 ◦ d
⊲⊳ +

k−1∑

t=0

(−1)t(∂v
0 ◦Ψt,k−t − ∂

h
t+1 ◦Ψt+1,k−t−1).

So dTot ◦Ψk = Ψk−1 ◦ d
⊲⊳ because

∂v
0 〈a

L
0 , . . . , a

L
t ; aR

t , . . . , a
R
k 〉 = 〈aL

0 , . . . , a
L
t ; aR

t+1, . . . , a
R
k 〉 = ∂h

t+1〈a
L
0 , . . . , a

L
t+1; aR

t+1, . . . , a
R
k 〉.

Since

Π

= ∇ ◦ Ψ and ∇ is a chain map, d∆
k−1 ◦

Π

k(xk) =

Π

k−1 ◦ d
⊲⊳
k (xk). So Proposition 5.12

shows that

Π

is a natural chain equivalence inverse to Π. Theorem 5.5 implies that Ψ is also a
natural chain equivalence. �
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To determine an explicit formula for

Π

k we combine the formula (5.3) for Ψk with the for-
mula (5.1) for the Eilenberg–Zilber map ∇k. Explicit formulae for the first few

Π

i are

Π

1[d1c1] = [c1; _] + [_; d1]

Π

2[d1c1, d2c2] = [c1 ⊳ d2, c2; _,_] + [c1,_; _, d2]− [_, c1; d2,_]

+ [_,_; d1, c1 ⊲ d2]

Π

3[d1c1, d2c2, d3c3] = [d1, c1 ⊲ d2, ((c1 ⊳ d2)c2) ⊲ d3; _,_,_] + [_,_, c1; d2, c2 ⊲ d3,_]

− [_, c1,_; d2,_, c2 ⊲ d3] + [c1,_,_; _, d2, c2 ⊲ d3]

+ [_, c1 ⊳ d2, c2; d3,_,_]− [c1 ⊳ d2,_, c2; _, d3,_]

+ [c1 ⊳ d2, c2,_; _,_, d3] + [_,_,_; c1 ⊳ (d2(c2 ⊲ d3)), c2 ⊳ d3, c3].

Remark 5.17. The formula (5.3) for Ψk was not initially obvious to us. We found formulae forΠ

k for k ≤ 3 using a computer-aided search predicated on formulae that involved factorisation
in C ⊲⊳ D of the element d1c1 · · · dkck, interspersed with objects to obtain elements of Ck ∗ Dk.
We searched for, and found, integer coefficients that solved a Z-linear equation ensuring a chain
map that inverts Πk on homology. With those in hand, we could guess, and then check, a general
formula for

Π

k, and then reverse-engineer a formula for Ψk.

We can also translate between categorical and total chains using the maps Ψ and

Ψ

= Π ◦ ∇.
For low-degree terms

Ψ

: ⊕p+q=k Z(Cp ∗ Dq)→ C⊲⊳
k (C,D) is given explicitly by

Ψ

1([c], [d]) = [c] + [d]

Ψ

2([c1, c2], [c3; d1], [d2, d3]) = [c1, c2] + [c3, d1]− [c3 ⊲ d1, c3 ⊳ d1] + [d2, d3]
Ψ

3([c1, c2, c3], [c4, c5; d1], [c6; d2, d3], [d4, d5, d6]) = [c1, c2, c3] + [(c4c5) ⊲ d1, c4 ⊳ (c5 ⊲ d1), c5 ⊲ d1]

− [c4, c5 ⊲ d1, c5 ⊳ d1] + [c4, c3, d1]

+ [c6, d2, d3]− [c6 ⊲ d2, c6 ⊳ d2, d3]

+ [c6 ⊳ d2, (c6 ⊳ d2) ⊲ d3, c6 ⊳ (d2d3)] + [d4, d5, d6].

5.6. A spectral sequence and a Künneth Theorem.

5.6.1. A spectral sequence. There is a spectral sequence that computes the total homology of a
double complex; this and Theorem 5.3 compute of the homology of C ⊲⊳ D.

For fixed p ∈ N, the sequence

· · · Cp,2 Cp,1 Cp,0

dv
p,2 dv

p,1 dv
p,0

(5.15)

(the p-th column of the double complex (4.2)) is a chain complex with homology groups

Hv
p,q(C,D) := Hq(Cp,•, d

v
p,•). (5.16)

Since dv
p,q ◦ d

h
p,q+1 = −dh

p,q ◦ d
v
p+1,q, the maps dh

p,q descend to homomorphisms d̃h
p,q : Hv

p+1,q(C,D)→
Hv

p,q(C,D). For each q ∈ N, the sequence

· · · Hv
2,q(C,D) Hv

1,q(C,D) Hv
0,q(C,D)

d̃h
2,q d̃h

1,q d̃h
0,q

(5.17)

is a chain complex. We define Hh
pH

v
q (C,D) to be the p-th homology group of this complex,

Hh
pH

v
q (C,D) := Hp(Hv

•,q(C,D), d̃h
•,q).
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We define Hv
qH

h
p (C,D) symmetrically by first considering rows of (4.2) and then columns:

Hv
qH

h
p (C,D) := Hq(H

h
p,•(C,D), d̃v

p,•).

Corollary 5.18 (cf. [Wei94, §5.6]). Let C•,• be the matched complex of a matched pair (C,D).
Then there are homology spectral sequences {Ehv,r

p,q , dhv,r
p,q } and {Evh,r

p,q , dvh,r
p,q } with first pages Ehv,1

p,q =

Hv
p,q(C,D) and Evh,1

p,q = Hh
p,q(C,D) with dhv,1 = d̃h and dvh,1 = d̃v, and second pages

Ehv,2
p,q = Hh

pH
v
q (C,D) and Evh,2

p,q = Hv
qH

h
p (C,D),

that both converge to the categorical homology of C ⊲⊳ D.

We will use these spectral sequences to compute the homology of examples in Section 6.

5.6.2. The Künneth Theorem for products of monoids. Let S and R be monoids. Define a matched
pair (S,R) by s⊲r = r and s⊳r = s. The monoid S ⊲⊳ R is just S×R. There is an isomorphism of
double complexes C•(S)⊗ZC•(R) ∼= C•,• taking [s1, . . . , sp]⊗[r1, . . . , rq] to [s1, . . . , sp, r1, . . . , rq].

Theorem 5.3 implies that H•(S × R) ∼= HTot
• (S,R) = HTot(C•,•). So we recover the Künneth

formula [Wei94, Theorem 3.6.3]: an unnaturally split exact sequence

0
⊕

p+q=nHp(S)⊗Hq(R) Hn(S × R)
⊕

p+q=n−1 TorZ1 (Hp(S), Hq(R)) 0.

6. Examples and homology computations

In this section (specifically in Section 6.4) we use our results to compute the homology of matched
pairs that are like pullbacks of odometer actions over the path categories of directed graphs. The
technical results we develop along the way apply to more-general systems such as Exel–Pardo
self-similar systems and k-graphs.

We first consider, in Section 6.1, matched pairs (C,D) in which D = E∗ for a directed graph
E. We show that the vertical homology Hv

p,•(C, E
∗) of (5.16) vanishes above degree 1. This is

unsurprising since directed graphs are 1-dimensional; but we could not find a general theorem that
applies, so we prove that Hv

p,q(C, E
∗) = 0 for q ≥ 2 by direct computation.

In Section 6.2 we consider matched pairs (C,D) where C is a disjoint union
⊔

u∈D0 Cu of monoids.
We describe an isomorphism between Hh

•,q(C,D) and the direct sum
⊕

u∈D0 H•(Cu;ZuDq) of the
homology of the monoids Cv with coefficients in ZuDq. The Universal Coefficient Theorem gives
a short exact sequence that computes Hh

•,q(C,D) as an extension of an appropriate Tor-group by⊕
u∈D0 Hp(Cu)⊗ZCu

ZuDq.
In Section 6.3 we restrict further to Cu

∼= Z. We deduce that Hh
•,q(Z×D

0,D) vanishes in degree 2

or more, and compute Hh
0,q(Z × D

0,D) and Hh
1,q(Z × D

0,D) in terms of the groups of invariants
and coinvariants ZuDq.

Finally, in Section 6.4 we compute H⊲⊳
• (Z× F 0, F ∗) for matched pairs consisting of a bundle of

copies of Z acting like odometers on the path category of a directed graph F . We show that in
the second spectral sequence of Corollary 5.18, only Evh,2

0,0 , Evh,2
1,0 , Evh,2

0,1 , and Evh,2
1,1 can be nonzero.

So the sequence converges on its second page, yielding an explicit formula for H⊲⊳
• (Z× F 0, F ∗) in

terms of a weighted incidence matrix in MF 0,F 1(Z) (Proposition 6.14).
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6.1. Matched pairs involving path categories of directed graphs. Let E be a directed
graph and suppose that (C, E∗) is a matched pair. We say that (C, E∗) is a length-preserving
matched pair if |c ⊲ α| = |α| for all (c, α) ∈ C ∗ E∗.

We write Np,q for the subgroup of Cp,q generated by the nondegenerate vertical chains: chains
[c; d1, . . . , dq] such that di /∈ D

0 for all 1 ≤ i ≤ q. By [Wei94, Theorem 8.3.8], the group Hv
p,q(C, E

∗)
of (5.16) is isomorphic to the q-th homology group of (Np,•, d

v
p,•|Np,•

).

For α ∈ E∗ we write αi for the i-th edge of α. So α = α1α2 · · ·α|α|. For 0 ≤ i ≤ j ≤ |α|, we
define α[i,j] ∈ Ej−i by α = α′α[i,j]α′′ for some α′ ∈ Ei and α′′ ∈ E|α|−j. For example, α[i−1,i] = αi

for 1 ≤ i ≤ |α|, and α = α[0,i−1]αiα[i,|α|] for each i.

Proposition 6.1. Let C be a small category and let E be a directed graph, and suppose that (C, E∗)
is a length-preserving matched pair. Taking the convention that the empty sum is zero, for p ≥ 0
and q ≥ 1, define sv

p,q : Np,q → Np,q+1 by

sv
p,q[c;α] = −

|α1|−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,|α1|]
1 , α2, . . . , αq]

for c ∈ Cp and α = (α1, . . . , αq) ∈ (E∗)q with s(c) = r(α1). Then for q ≥ 2,

dv
p,qs

v
p,q + sv

p,q−1d
v
p,q−1 = idNp,q

. (6.1)

In particular, for q ≥ 2 we have Hv
p,q(C, E

∗) = 0, and there is a long exact sequence

· · · H⊲⊳
p+1(C, E

∗) Ehv,2
p+1,0 Ehv,2

p−1,1 H⊲⊳
p (C, E∗) Ehv,2

p,0 Ehv,2
p−2,1 H⊲⊳

p−1(C, E
∗) · · · .d d

Proof. Fix q ≥ 2. We write d :=
⊕

p d
v
p,q, s =

⊕
p s

v
p,q, and Nq :=

⊕
pNp,q. The restrictions

∂j : Nq → Nq−1 of the face maps satisfy

∂j([c;α1, . . . , αq]) =





[c ⊳ α1;α2, . . . , αq] if j = 0

[c;α1, . . . , αjαj+1, . . . , αq] if 1 ≤ j ≤ q − 1

[c;α1, . . . , αq−1] if j = q,

and dq =
∑q

j=0(−1)j∂j .
We first claim that for j ≥ 3 we have ∂j ◦ s = s ◦ ∂j−1. Indeed,

∂j(s([c;α1, α2, . . . , αq])) = −
|α1|−1∑

i=1

∂j([c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,|α1|]
1 , α2, . . . , αq])

= −
|α1|−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,|α1|]
1 , ∂j−2(α2, . . . , αq)]

= s([c;α1, ∂j−2(α2, . . . , αq)])

= s(∂j−1([c;α1, α2, . . . , αq])).
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Using this at the final equality, we obtain

d ◦ s+ s ◦ d =
q+1∑

i=0

(−1)i∂i ◦ s+
q∑

j=0

(−1)js ◦ ∂j

= ∂0 ◦ s− ∂1 ◦ s + ∂2 ◦ s+
( q+1∑

i=3

(−1)i∂i ◦ s
)

+ s ◦ ∂0 − s ◦ ∂1 +
( q∑

j=2

(−1)js ◦ ∂j

)

= ∂0 ◦ s− ∂1 ◦ s + ∂2 ◦ s+ s ◦ ∂0 − s ◦ ∂1 +
q+1∑

j=3

(
(−1)j∂j ◦ s− (−1)js ◦ ∂j−1

)

= ∂0 ◦ s− ∂1 ◦ s + ∂2 ◦ s+ s ◦ ∂0 − s ◦ ∂1.

So it suffices to show that

∂0 ◦ s− ∂1 ◦ s+ ∂2 ◦ s + s ◦ ∂0 − s ◦ ∂1 = idNq
. (6.2)

For this, fix x := [c;α1, . . . , αq] ∈ Nq. Let l := |α1|. We claim that

(∂0 ◦ s− ∂1 ◦ s)(x) = x− [c ⊳ α
[0,l−1]
1 ;αl

1, α2, . . . , αq]. (6.3)

To see this, we compute:

∂0 ◦ s(x) = ∂0

(
−

l−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,l]
1 , α2, . . . , αq]

)
= −

l−1∑

i=1

[c ⊳ α
[0,i]
1 ;α

[i,l]
1 , α2, . . . , αq], and

∂1 ◦ s(x) = ∂1

(
−

l−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,l]
1 , α2, . . . , αq]

)
= −

l−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;α

[i−1,l]
1 , α2, . . . , αq].

So

(∂0 ◦ s− ∂1 ◦ s)(x) =
l−1∑

i=1

(
− [c ⊳ α

[0,i]
1 ;α

[i,l]
1 , α2, . . . , αq] + [c ⊳ α

[0,i−1]
1 ;α

[i−1,l]
1 , α2, . . . , αq]

)

telescopes to (6.3). Next, we claim that

(s ◦ ∂0− s ◦ ∂1)(x) =
( l−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1;α
[i,l]
1 α2, α3, . . . , αq]

)
+ [c ⊳ α

[0,l−1]
1 ;αl

1, α2, α3, . . . , αq]. (6.4)

Let m := |α2|. Again, we compute:

s ◦ ∂0(x) = s([c ⊳ α1;α2, . . . , αq]) = −
m−1∑

i=1

[c ⊳ α
[0,i−1]
2 ;αi

2, α
[i,m]
2 , α3, . . . , αq], (6.5)

and

s ◦ ∂1(x) = s([c;α1α2, . . . , αq])

= −
l+m−1∑

i=1

[c ⊳ (α1α2)[0,i−1]; (α1α2)i, (α1α2)[i,l+m], α3, . . . , αq]

= −
( l−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,l]
1 α2, α3, . . . , αq]

)
− [c ⊳ α

[0,l−1]
1 ;αl

1, α2, . . . , αq]

−
( m−1∑

i=1

[c ⊳ (α1α
[0,i−1]
2 );αi

2, α
[i,m]
2 , α3, . . . , αq]

)
.
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Subtracting (6.5) from this equation yields (6.4). Now we add Equations (6.4) and (6.3), and the

terms [c ⊳ α
[0,l−1]
1 ;αl

1, α2, α3, . . . , αq] cancel, giving

(∂0 ◦ s− ∂1 ◦ s+ s ◦ ∂0 − s ◦ ∂1)(x) = x+
( l−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,l]
1 α2, α3, . . . , αq]

)
. (6.6)

Finally, we compute

∂2 ◦ s(x) = ∂2

(
−

l−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,l]
1 , α2, . . . , αq]

)
= −

l−1∑

i=1

[c ⊳ α
[0,i−1]
1 ;αi

1, α
[i,l]
1 α2, . . . , αq].

Adding this to (6.6) gives (∂0 ◦ s− ∂1 ◦ s+ ∂2 ◦ s+ s ◦ ∂0 − s ◦ ∂1)(x) = x, which gives (6.2).
Now fix a ∈ ker(dq−1) ∩Nq. Then (6.1) gives

a = dq(sq(a)) + sq−1(dq−1(a)) = dq(sq(a)) ∈ ran(dq),

so Hq(Np,•) = 0. Theorem 8.3.8 of [Wei94] gives Hv
p,q(C, E

∗) = Hq(Np,•) = 0. The long exact
sequence exists by definition of convergence of a spectral sequence [Wei94, p.124]. �

Remark 6.2. The proof of the preceding lemma relies on treating the empty sum as zero, prompting
a quick reality check of the edge-case where [c;α1, . . . , αq] ∈ Nq with α1 = e ∈ E1. Let x =
[c; e, α2, . . . , αq]. Since sv

p,q(x) = 0, (6.1) for x collapses to sv
p,q−1 ◦ d

v
p,q−1(x) = x, so the cancellation

that led to (6.2) appears to fall down.
But all is well: for j ≥ 3 we have ∂j([c; e, α2, . . . , αq]) = [c; e, κ] for some κ ∈ (E∗)q−1,

and so sv
p,q−1(∂j(x)) = sv

p,q−1([c; e, κ]) = 0. So sv
p,q−1 ◦ d

v
p,q−1(x) = sv

p,q−1([c ⊳ e;α1, . . . , αq]) −
sv

p,q−1([c; eα1, . . . , αq]) and all the terms in the resulting sums cancel except the first term
−(−[c; e, α1, . . . , αq]) = x of sv

p,q−1([c; eα1, . . . , αq]).

Recall that {Evh,r
p,q , dvh,r

p,q } is the spectral sequence of Corollary 5.18, which in our current setup

satisfies Evh,2
p,q = Hv

pH
h
q (C, E∗).

Lemma 6.3. Let C be a small category and let E be a directed graph, and suppose that (C, E∗) is a
length-preserving matched pair. For p ≥ 0 and q ≥ 2, we have sv

p,q ◦ d
h
p,q = dh

p,q+1 ◦ s
v
p+1,q. We have

Evh,2
p,q = 0 for all q ≥ 2, H⊲⊳

0 (C, E∗) ∼= Evh,2
0,0 , and for each n ≥ 1 there is a short exact sequence

0 Evh,2
0,n H⊲⊳

n (C, E∗) Evh,2
1,n−1 0.

Proof. Fix (c;α) ∈ Cp+1 ∗ (E∗)q. We compute

dh
p,q+1 ◦ s

v
p+1,q[c;α] =

|α1|−1∑

i=1

p+1∑

k=0

(−1)k∂h,k
p,q+1[c ⊳ α

[0,i−1]
1 ;αi

1, α
[i,|α1|]
1 , α2, . . . , αq].

Analogously to Lemma 4.4, we observe that for 0 ≤ k ≤ p,

∂h,k
p,q+1[c ⊳ α

[0,i−1]
1 ;αi

1, α
[i,|α1|]
1 , α2, . . . , αq] = [∂h,k

p,0 [c ⊳ α
[0,i−1]
1 ];αi

1, α
[i,|α1|]
1 , α2, . . . , αq]

= [∂h,k
p,0 [c] ⊳ α

[0,i−1]
1 ;αi

1, α
[i,|α1|]
1 , α2, . . . , αq].
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Write (cp ⊲ α)r for the r-th entry of c ⊲ α ∈ (E∗)q. For k = p+ 1 we have

∂h,p+1
p,q+1 [c ⊳ α

[1,i−1]
1 ;αi

1, α
[i,|α1|]
1 , α2, . . . , αq]

= [∂h,p+1
p,0 [c ⊳ α

[0,i−1]
1 ]; (cp ⊳ α

[0,i−1]
1 ) ⊲ (αi

1, α
[i,|α1|]
1 , α2, . . . , αq)]

= [∂h,p+1
p,0 [c] ⊳ α

[1,i−1]
1 ; (cp ⊲ α)i

1, (cp ⊲ α)
[i,|α1|]
1 , (cp ⊲ α)2, . . . , (cp ⊲ α)q].

Hence,

dh
p,q+1 ◦ s

v
p+1,q[c;α] =

p+1∑

k=0

(−1)ksv
p,q ◦ ∂

h,k
p,q [c;α] = sv

p,q ◦ d
h
p,q[c;α].

Thus, the sv
p,q descend to sections of the differentials between the Evh,1

p,q , and the resulting homology

groups Evh,2
p,q vanish for q ≥ 2. So the spectral sequence stabilises by the second page, and short

exact sequences follow from the associated filtration. �

6.2. Matched pairs involving bundles of monoids. In this section (C,D) is a matched pair
in which C =

⊔
u∈D0 Cu is a bundle of monoids over C0 = D0. For each u ∈ D0 and q ≥ 0, the free

Z-module ZuDq generated by uDq = {d ∈ Dq | r(d) = u} is a left Cu-module under the action

c ·
( ∑

d∈Dq ndd
)

=
∑

d∈Dq nd(c ⊲ d).

For a monoid S, the categories of left (respectively right) S-modules and left (respectively right)
Z[S]-modules are equivalent. Given a left S-module M we can compute the homology H•(S;M)
of S with coefficients in M as follows: fix a projective resolution · · · → P1 → P0 → Z → 0 of the
trivial S-module Z. Then H•(S;M) is the homology of the chain complex · · · → P1⊗Z[S]M →

P0⊗Z[S]M → 0: that is, Hn(S;M) := TorZ[S]
n (Z;M).

By taking the bar resolution of the trivial (right) S-module Z we arrive at a more familiar
description. For n ≥ 1 let Bn be the free S-module generated by {[s1, . . . , sn] | si ∈ S}. Let B0 be
the free S-module generated by the symbol [ ]. Define bn : Bn+1 → Bn by

bn[s0, . . . , sn] = [s1, . . . , sn] +
n∑

i=1

(−1)i[s0, . . . , si−1si, . . . , sn] + (−1)n+1[s1, . . . , sn−1]sn (6.7)

for n ≥ 1 and b−1 : B0 → Z by b−1[ ] = 1; note that b0[s0] = [ ]− [ ]s0. The group of p-chains with
values in M is

Cp(S;M) := Bp⊗Z[S]M.

The boundary maps dp := bp⊗ idM : Cp+1(S;M)→ Cp(S;M) for p ≥ 1 satisfy

dp([s0, . . . , sp]⊗m) = [s1, . . . , sp]⊗m+
p∑

i=1

(−1)i[s0, . . . , si−1si, . . . , sp]⊗m

= (−1)p+1[s0, . . . , sp−1]⊗ sp ·m,

and d0 : C1(S;M) → C0(S;M) satisfies d0([s0]⊗m) = [ ]⊗m − [ ]⊗ s0 · m. Then Hn(S;M) ∼=
ker(dn−1)/ im(dn). Taking M = Z, the trivial S-module, recovers Definition 4.1 if C = S.

Given a matched pair (C,D) where C is a bundle of monoids, we can compute the horizontal
homology of the matched complex using the homology of the monoids Cu.

Proposition 6.4. Let D be a small category and let C =
⊔

u∈D0 Cu be a bundle of monoids over D0

such that (C,D) is a matched pair. Then Cp(Cu;ZuDq) ∋ [c0, . . . , cp]⊗ d 7→ [c0, . . . , cp−1; cp ⊲ d] ∈
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Cp,q induces an isomorphism

Hh
p,q(C,D) ∼=

⊕

u∈D0

Hp(Cu;ZuDq),

and there is a short exact sequence

0
⊕

u∈D0 Hp(Cu)⊗Z[Cu] ZuD
q Hh

p,q(C,D)
⊕

u∈D0 Tor
Z[Cu]
1 (Hp−1(Cu),ZuDq) 0.

Proof. In Cp(Cu;ZuDq) = Bp⊗Z[Cu] ZuD
q we have [c1, . . . , cp]⊗ d = [c1, . . . , cp−1, s(cp−1)]⊗ cp · d.

Consequently, the map πp,q :
⊕

u∈D0 Cp(Cu;ZuDq)→ Cp,q defined by

πp,q([c0, . . . , cp]⊗ d) = [c0, . . . , cp−1; cp ⊲ d]

for [c0, . . . , cp]⊗ d ∈ Cp(Cu;ZuDq) and u ∈ D0, is an isomorphism. Moreover,

dh
p,q ◦ πp+1,q([c0, . . . , cp+1]⊗ d) = dh

p,q[c1, . . . , cp, cp+1 ⊲ d]

= [c1, . . . , cp; cp+1 ⊲ d] +
p∑

i=1

(−1)i[c0, . . . , ci−1ci, . . . , cp; cp+1 ⊲ d]

+ (−1)p+1[c0, . . . , cp−1, cpcp+1 ⊲ d]

= πp,q ◦ d
u
p,q([c0, . . . , cp+1]⊗ d).

So Hh
p,q(C,D) ∼=

⊕
u∈D0 Hp(Cu;ZuDq).

Since Z is a free Cu-module the short exact sequence follows from [Wei94, Theorem 3.6.1]. �

6.3. Matched pairs involving integer bundles. In this section we consider matched pairs
(C,D) where C ∼= D0×Z. If M is a Z-module, then MZ = {m ∈M | k ·m = m for all k ∈ Z} is its
submodule of invariants and MZ = M/〈k ·m−m | k ∈ Z, m ∈M〉 is its module of coinvariants.

If X is a set and ⊲ : Z×X → X is a left action, we write Z\X for the set of Z-orbits in X. We
denote the orbit of x ∈ X by [[x]] ∈ Z\X, and the set of periodic points of X by

Per(X) := {x ∈ X | there exists k ∈ Z \ {0} such that k ⊲ x = x}.

Then Z\Per(X) ⊆ Z\X is the set of finite orbits in X.
Each left action ⊲ : Z×X → X induces a corresponding left action · : Z× ZX → ZX.

Lemma 6.5. Let X be a set, and ⊲ : Z×X → X a left action. There are isomorphisms

φ0 : Z(Z\X)→ (ZX)Z and φ1 : Z(Z\Per(X))→ (ZX)Z

such that φ0([[d]]) = d+ 〈k ·m−m | k ∈ Z, m ∈ ZX〉 and φ1([[d]]) =
∑

d′∈[[d]] d
′.

Proof. For the first isomorphism, regard ZX and Z(Z\X) as the sets of finitely supported Z-valued
functions on X and Z\X respectively. Define π : ZX → Z(Z\X) by π(f)([[x]]) =

∑
y∈[[x]] f(y). Then

ker(π) = 〈k ·m−m | k ∈ Z, m ∈ ZX〉, so π descends to an isomorphism (ZX)Z ∼= Z(Z\X) whose
inverse is the desired map φ0.

For the second isomorphism, fix m :=
∑

x∈X axx ∈ ZX, where each ax ∈ Z. Then
∑

x∈X axx =∑
[[y]]∈Z\X

∑
x∈[[y]] axx. For each k ∈ Z,

k ·m−m =
∑

[[y]]∈Z\X

( ∑

x∈[[y]]

ax(k ⊲ x)− axx
)
.
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Hence, k ·m −m = 0 for all k ∈ Z if and only if ax = ay whenever [[x]] = [[y]]; that is, a : x 7→ ax

is constant on orbits. Since a is finitely supported, if m ∈ (ZX)Z then a is nonzero only on finite
orbits. Hence, the formula for φ1 determines an isomorphism. �

Proposition 6.6. Let (C,D) be a matched pair with C = D0 × Z. There are isomorphisms
α0 :

⊕
u∈D0 Z(Cu\uD

q)→ Hh
0,q(C,D) and α1 :

⊕
u∈D0 Z(Cu\Per(uDq))→ Hh

1,q(C,D) satisfying

α0([[d]]) = [r(d); d] + im(dh
0,q) and α1([[d]]) =

∑

d′∈[[d]]

[1; d′] + im(dh
1,q). (6.8)

Moreover,

Hh
p,q(C,D) ∼=





⊕
u∈D0(ZuDq)Z if p = 0

⊕
u∈D0(ZuDq)Z if p = 1

0 otherwise

∼=





⊕
u∈D0 Z(Cu\uD

q) if p = 0
⊕

u∈D0 Z(Cu\Per(uDq)) if p = 1

0 otherwise.

(6.9)

Proof. We identify the group ring Z[Z] with the ring of Laurent polynomials Z[t, t−1]. Let
Σ: Z[t, t−1]→ Z be evaluation at 1, the homomorphism that sums coefficients.

As in [Wei94, Example 6.1.4],

· · · −→ 0 −→ Z[t, t−1]
×(t−1)
−→ Z[t, t−1]

Σ
−→ Z −→ 0, (6.10)

is a projective resolution of Z by Z[Z]-modules. Since any projective resolution computes the
homology of a group, it follows that H0(Z;ZuDq) ∼= (ZuDq)Z and H1(Z;ZuDq) ∼= (ZuDq)Z, and
that Hn(Z;ZuDq) = 0 for n ≥ 2. The first isomorphism of (6.9) follows from Proposition 6.4; the
second follows from Lemma 6.5.

Let Nq := 〈k · m − m | k ∈ Z, m ∈ ZuDq〉. To establish (6.8) we describe the chain map
connecting the bar resolution (6.7) with the resolution (6.10). Let δn be the generator of Z[Z]
corresponding to n ∈ Z, and let [n] be the basis element of the Z[Z]-module B1 (by definition, B1

is the free Z[Z]-module over Z, but who wants to write Z[Z][Z]?) Then the diagram

· · · 0 Z[t, t−1] Z[t, t−1] Z 0

· · · B2 B1 B0 Z 0

×(t−1) Σ

b1 b0 b−1

tn 7→[1]·δn tn 7→[ ]·δn id (6.11)

commutes. The homology H•(Z;ZuDq) as computed by each of these resolutions is obtained by
tensoring by ZuDq on the right, replacing Σ⊗ 1 and b−1 ⊗ 1 with 0, and taking homology.

Hence, for each u ∈ D0, the vertical map tn 7→ [ ]·δn in (6.11) induces an isomorphism coker(×(t−
1)⊗ idZuDq)→ H0(Z,ZuD

q) taking t0⊗ d+ im(×(t− 1)⊗ idZuDq) to d+ im(b0). The isomorphism
(ZuDq)Z → coker(×(t− 1)⊗ idZuDq) → H0(Z,ZuD

q) of [Wei94, Example 6.1.4] carries d + Nq to
t0 ⊗ d+ im(×(t− 1)⊗ idZuDq). So composing these maps gives an isomorphism ψu,0 : (ZuDq)Z →
H0(Z;ZuDq) such that ψu,0(d+Nq) = d+ im(b0 ⊗ idZuDq ) = d+ im(dh

0,q).
Similarly, tn 7→ [1] · δn restricts to an isomorphism ker(×(t − 1) ⊗ idZuDq ) → H1(Z,ZuD

q)
taking

∑
d kd(t0⊗ d) to

∑
d kd[1; d] + im(dh

1,q). The isomorphism (ZuDq)Z → ker(×(t− 1)⊗ idZuDq)

of [Wei94, Example 6.1.4] carries
∑
kdd to

∑
kd(t0 ⊗ d). So composing these maps yields an

isomorphism ψu,1 : (ZuDq)Z → H1(Z;ZuDq) given by ψu,1(
∑

d kdd) =
∑

d kd[1; d] + im(dh
1,q).

Lemma 6.5 gives an isomorphism φu,0 : Z(Cu\uD
q) → (ZuDq)Z such that φu,0([[d]]) = d + Nq

and an isomorphism φu,1 : Z(Cu\Per(uDq))→ (ZuDq)Z such that φu,1([[d]]) =
∑

d′∈[[d]] d
′. The maps

αi :=
⊕

u∈D0 ψu,i ◦ φu,i satisfy (6.8). �



HOMOLOGY FOR SELF-SIMILAR ACTIONS AND ZAPPA–SZÉP PRODUCTS 39

The next lemma helps to compute the terms Evh
p,q in Corollary 5.18.

Lemma 6.7. Let (C,D) be a matched pair with C = D0×Z. For d = (d0, . . . , dq) ∈ Per(Dq+1), let
O(d) := min{n ≥ 1 | n ⊲ d = d}. For each 0 ≤ i ≤ q, let ∂i : Dq+1 → Dq be the face map of (4.1).
Regarding O(d) ⊳ d ∈ {s(d)} × Z as an integer, for 0 ≤ i ≤ q define

ρi(d) :=





(O(d) ⊳ d0)/O(∂0(d)) if i = 0

O(d)/O(∂i(d)) if i ≥ 1.

Then ρi(d) is a nonnegative integer for each i.

Proof. First suppose that i ≥ 1. It suffices to show that O(d) ⊲ ∂i(d) = ∂i(d). By Lemma 4.4,

d = O(d) ⊲ d =
(
O(d) ⊲ d0, (O(d) ⊳ d0) ⊲ d1, . . . , (O(d) ⊳ (d0 . . . dq−1)) ⊲ dq

)
.

Hence,
(
O(d) ⊳ (d0 . . . dj−1)

)
⊲ dj = dj for all 1 ≤ j ≤ q. In particular, for i ≤ q, we have

(O(d) ⊳ d0 . . . di−2) ⊲ (di−1di) =
(
O(d) ⊳ d0 . . . di−2) ⊲ di−1

)(
(O(d) ⊳ d0 . . . di−1) ⊲ di

)
= di−1di.

Thus for i ≤ q, we have

O(d) ⊲ ∂i(d) =
(
O(d) ⊲ d0, . . . , (O(d) ⊳ d0 . . . di−3) ⊲ di−2, (O(d) ⊳ d0 . . . di−2) ⊲ (di−1di),

(O(d) ⊳ d0 . . . di) ⊲ di+1, . . . , (O(d) ⊳ d0 . . . dq−1) ⊲ dq

)

= (d0, . . . , di−2, di−1di, di+1, . . . , dq) = ∂i(d).

When i = q + 1, O(d) ⊲ ∂q+1(d) = ∂q+1(O(d) ⊲ d) = ∂q+1(d); and when i = 0,

(O(d) ⊳ d0) ⊲ ∂0(d) = (O(d) ⊳ d0) ⊲ (d1, d2, . . . , dq)

=
(
(O(d) ⊲ d)1, (O(d) ⊲ d)2, . . . , (O(d) ⊲ d)q

)
= (d1, . . . , dq) = ∂0(d). �

Proposition 6.8. Let (C,D) be a matched pair with C = D0×Z. For p ∈ {0, 1}, let d1
p,q : Evh,1

p,q+1 →

Evh,1
p,q , q ≥ 0, be the differentials in the first sheet of the spectral sequence Evh

p,q of Corollary 5.18.

Let α0, α1 be as in Proposition 6.6. For 0 ≤ i ≤ q, let ∂i : Dq+1 → Dq be the face map of (4.1),
and let ρi : Per(Dq)→ Z be as defined in Lemma 6.7. Define

∆0,q :
⊕

u∈D0 Z(Cu\uD
q+1)→

⊕
u∈D0 Z(Cu\uD

q) and

∆1,q :
⊕

u∈D0 Z(Cu\Per(uDq+1))→
⊕

u∈D0 Z(Cu\Per(uDq))

by

∆0,q([[d]]) =
q∑

i=0

(−1)i[[∂i(d)]], and ∆1,q([[d]]) =
q∑

i=0

(−1)iρi(d)[[∂i(d)]].

Then αp ◦ ∆p,q = d1
p,q ◦ αp for p = 0, 1 and all q ∈ N. In particular, Evh,2

0,• is isomorphic to the

homology of the chain complex (
⊕

u∈D0 Z(Cu\uD
•),∆0,•), and Evh,2

1,• is isomorphic to the homology
of the chain complex (

⊕
u∈D0 Z(Cu\Per(uD•)),∆1,•).

Proof. To see that α0 ◦∆0,q = d1
0,q ◦ α0, we use that dv

0,q = d1
0,q to compute:

d1
0,q(α0([[d]])) = dv

0,q([r(d); d]) + im(dh
0,q+1) = α0(∆0,q([[d]])).
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To see that α1 ◦∆1,q = d1
1,q ◦ α1, we first claim that for d ∈ Per(Dq) and n ≥ 0,

[n; d] + im(dh
1,q+1) =

n−1∑

j=0

[1; j ⊲ d] + im(dh
1,q+1) ∈ H

h
1,q+1(C,D). (6.12)

We argue by induction. The case n = 0 is trivial: [0; [[d]]] is a sum of degenerate chains. Suppose
inductively that (6.12) holds for n. We calculate, using (6.12) at the third equality:

0 + im(dh
1,q+1) = dh

1,q+1[1, n; d] + im(dh
1,q+1)

= [n; d]− [n+ 1; d] + [1;n ⊲ d] + im(dh
1,q+1)

=
n−1∑

j=0

[1; j ⊲ d]− [n+ 1; d] + [1;n ⊲ d] + im(dh
1,q+1)

=
n∑

j=0

[1; j ⊲ d]− [n+ 1; d] + im(dh
1,q+1),

and rearranging gives (6.12).
Since [[d]] = {j ⊲ d : 0 ≤ j ≤ O(d)− 1}, Equation (6.12) gives

α1([[d]]) =
∑

d′∈[[d]]

[1; d′] + im(dh
1,q+1) =

O(d)−1∑

j=0

[1; j ⊲ d] + im(dh
1,q+1) = [O(d); d].

Using this at the first line, we calculate:

d1
1,q(α1([[d]])) = d1

1,q([O(d); d]) + im(dh
1,q)

= [O(d) ⊳ d0; ∂0(d)] +
q+1∑

i=1

(−1)i[O(d); ∂i(d)] + im(dh
1,q)

=
q+1∑

i=0

(−1)i[ρi(d)O(∂i(d)); ∂i(d)] + im(dh
1,q). (6.13)

For any d′ ∈ Dq and any n ≥ 0 we have

[nO(d′); d′] + im(dh
1,q) =

nO(d′)−1∑

j=0

[1; j ⊲ d′] + im(dh
1,q)

=
n−1∑

k=0

O(d′)−1∑

j=0

[1; j ⊲ (kO(d′) ⊲ d′)] + im(dh
1,q)

= n
O(d′)−1∑

j=0

[1; j ⊲ d′] + im(dh
1,q) = n[O(d′); d′] + im(dh

1,q).

Applying this to each term of (6.13), we obtain

d1
1,q(α1([[d]])) =

q+1∑

i=0

(−1)iρi(d)[O(∂i(d)); ∂i(d)] + im(dh
1,q)

=
q+1∑

i=0

(−1)iρi(d)α1([[∂i(d)]]) = α1(∆1,q([[d]])).

The remaining statements follow. �
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6.4. Graphs of odometers. Here, we apply Proposition 6.8 and Theorem 5.3 to the following
class of examples generalising the odometer action.

Set-up 6.9. Let E be a finite directed graph, and let p : E1 → N \ {0} be a function. Define
F = (F 0, F 1, r, s) by F 0 = E0, F 1 = {(e, i) : e ∈ E1, i ∈ Z/p(e)Z}, r(e, i) = r(e), and s(e, i) = s(e).
We write +p for the group operation on Z/pZ. Let G := E0 × Z. We obtain a self-similar action
of G on the 1-graph F ∗ (in the sense of Definition 3.33) by the unique possible extension of the
formulae

(r(e), 1) ⊲ (e, i) = (e, i+p(e) 1) and (r(e), 1) ⊳ (e, i) =





(s(e), 1) if i = p(e)− 1

(s(e), 0) otherwise.

If E0 = {v}, E1 = {e}, and p(e) = 2, then (G, F ∗) is the binary odometer.
Extend p to a functor p : E∗ → N×. Then Θ: F ∗ → {(µ, i) | µ ∈ E∗, i ∈ Z/p(µ)Z} given by

Θ((e1, m1)(e2, m2) · · · (ek, mk)) =
(
e1e2 · · · ek,

k∑

j=1

mjp(e1 · · · ej−1)
)
.

is a bijection. Identifying F ∗ with {(µ, i) | µ ∈ E∗, i ∈ Z/p(µ)Z} via Θ, and writing ⌊·⌋ : R → Z

for the floor function ⌊x⌋ = max{n ∈ Z : n ≤ x}, we have

(r(µ), a) ⊲ (µ,m) = (µ, a+p(µ) m) and (r(µ), a) ⊳ (µ,m) =
(
s(µ), ⌊(a+m)/p(µ)⌋

)

(in the second formula, m is regarded as an element of {0, . . . p(µ)− 1} and the addition a+m is
computed in Z). It is helpful to keep in mind the special case that

a ⊲ (µ, 0) = (µ, a mod p(µ)), and a ⊳ (µ, 0) = ⌊a/p(µ)⌋. (6.14)

Remark 6.10. The self-similar actions of Set-Up 6.9 are faithful self-similar actions as in Defini-
tion 3.30. They are also length-preserving matched pairs as in Subsection 6.1.

We use the symbols λ, µ, ν for paths in E and ξ, η, ζ for paths in F . So an element of F ∗ might
be written as ξ = (µ,m). We write p : F ∗ → N \ {0} for the map p(µ,m) = p(µ).

Lemma 6.11. In the situation of Set-up 6.9, we have Per(uF ∗q) = uF ∗q for each u ∈ F 0 and q ∈
E0. For each u ∈ E0 the map (µ0, . . . , µq−1) 7→ Gu ⊲ ((µ0, 0), . . . , (µq−1, 0)) induces an isomorphism
κq : ZuE∗q → Z(Gu\uF

∗q). The functions O, ρi : (F ∗)q+1 → Z satisfy

O(ξ0, . . . , ξq) = p(ξ0ξ1 · · · ξq) and ρi(ξ0, . . . , ξq) =





1 if 0 ≤ i < q

p(ξq) if i = q.
(6.15)

Proof. For p0, . . . , pq > 0, the odometer action Od of Z on
∏q

i=0(Z/piZ) is transitive, so the order
of any point under Od is

∏
i pi. For u ∈ E0 and µ = (µ0, . . . , µq−1) ∈ E∗u, the action of Gu

on {((µ0, m0), . . . , (µq, mq)) | mi ∈ Z/p(µi)Z} is conjugate to this odometer with pi = p(µi). So
each O(ξ0, . . . , ξq) =

∏q
i=0 p(ξi) = p(ξ0 · · · ξq), we have Per(uF ∗q) = uF ∗q, and (µ0, . . . , µq−1) 7→

Gu ⊲ ((µ0, 0), . . . , (µq−1, 0)) is a bijection uE∗q → Gu\uF
∗q.

For the ρi, observe that if i ≥ 1, then writing ∂i(ξ) = (η0, . . . , ηq−1), we have η0 · · ·ηq−1 = ξ0 · · · ξq

if i 6= q and η0 · · · ηq−1 = ξ0 · · · ξq−1 if i = q. Hence (6.15) implies that ρi(ξ) = O(ξ)/O(∂i(ξ)) = 1
if i < q, and ρq(ξ) = O(ξ)/O(∂q(ξ)) = p(ξq).
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It remains to calculate ρ0(ξ). Since Od is transitive, id×Od is transitive on {(µ0, . . . , µq)} ×∏q
i=0 Z/p(µi)Z. So it suffices to show that ξ = ((µ0, 0), (µ1, 0), . . . , (µq, 0)) satisfies ρ0(ξ) = 1.

Applying (6.14), with a = O(ξ) = p(ξ0 · · · ξq), gives

O(ξ) ⊳ (µ0, 0) = ⌊O(ξ)/p(µ0)⌋ = ⌊p(µ0 · · ·µq)/p(µ0)⌋ = p(µ1 · · ·µq) = O(∂0(ξ)). �

Lemma 6.12. With Set-up 6.9 let κq : ZuE∗q → Z(Gu\uF
∗q) be the isomorphism of Lemma 6.11.

For each 0 ≤ i ≤ q, let ∂i : E∗(q+1) → E∗q be the face map of (4.1). Let ∆1,q be as in Proposition 6.8,

and define ∆̃1,q :
⊕

u∈E0 ZuE∗(q+1) →
⊕

u∈D0 ZuE∗q by

∆̃1,q(µ) =
( q−1∑

i=0

(−1)i∂i(µ)
)

+ (−1)qp(µq)∂q(µ). (6.16)

Then κq ◦∆1,q = ∆̃1,q ◦ κq+1 for all q.

Proof. This follows directly from (6.16) and Lemma 6.11. �

To compute homology for Set-up 6.9, we must compute ∆̃1,1

( ⊕
u∈E0 ZuE∗2

)
⊆

⊕
u∈D0 ZuE∗.

Lemma 6.13. In the situation of Set-up 6.9, we have ZE∗ = ZE1+im(∆̃1,1), and im(∆̃1,1)∩ZE
1 =

{0}. In particular, ZE∗ ∼= ZE1 ⊕ im(∆̃1,1).

Proof. Since ∆̃1,0(ZE0) = 0 and ∆̃1,1(Z(E0 ∗ E∗)) = ∆̃1,1(Z(E∗ ∗ E0)) = ZE0, it suffices to show

that ZE≥1 = ZE1 + im(∆̃1,1|ZE≥1) and im(∆̃1,1|ZE≥1) ∩ ZE1 = {0}.
Recall that for µ ∈ E≥1 and 1 ≤ i ≤ |µ|, the elements µ[0,i−1] ∈ Ei−1, µi ∈ E1 and µ[i,|µ|] ∈ E|µ|−i

are defined implicitly by µ = µ[0,i−1]µiµ[i,|µ|]. Let ∆̃ := ∆̃1,1. To see that ZE≥1 = ZE1+im(∆̃|ZE≥1),
it suffices to show that for µ ∈ E∗ \ E0,

µ ∈
( |µ|∑

i=1

p(µ[i,|µ|])µi

)
− ∆̃(µ[0,|µ|−1], µ|µ|) + spanZ{∆̃(α, β) : |αβ| < |µ|}. (6.17)

in ZE∗. We induct on |µ|. If |µ| = 1 then
∑|µ|

i=1 p(µ
[i,|µ|])µi = p(s(µ))µ = µ and (6.17) is trivial.

Now suppose that (6.17) holds for |µ| ≤ n and fix µ ∈ En+1. Write µ = νe with e ∈ E1. Then
e = µ[n,n+1] = µn+1, and µ[i,n+1] = ν[i,n]e and νi = µi for i ≤ n. We calculate (in ZE∗):

µ = −∆̃(ν, e) + e+ p(e)ν = −∆̃(ν, e) + p(µ[n,n+1])µn+1 + p(µn+1)ν. (6.18)

By the inductive hypothesis,

p(µn+1)ν ∈ p(µn+1)
(( n∑

i=1

p(ν[i,n])νi

)
− ∆̃(ν[0,n−1], νn) + spanZ{∆̃(α, β) : |αβ| < n}

)

⊆
n∑

i=1

p(µn+1)p(ν[i,n])νi + spanZ{∆̃(α, β) : |αβ| < n}.

Since p is multiplicative and each ν[i,n]µn+1 = µ[i,n+1], we obtain

p(µn+1)ν ∈
n∑

i=1

p(µ[i,n+1])µi + spanZ{∆̃(α, β) : |αβ| < n+ 1}.

Substituting this into (6.18) completes the induction, proving the first statement.

For im(∆̃|ZE≥1) ∩ ZE1 = {0}, fix (µ, ν), (η, ζ) ∈ E≥1 ∗ E≥1 with µν = ηζ . We claim that

∆̃(µ, ν)− ∆̃(η, ζ) ∈ spanZ{∆̃(α, β) : |αβ| < |µν|}. (6.19)
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We first show that if µ, ν ∈ E∗ \ E0 and µν = λ, then

∆̃(µ, ν) ∈ −λ+
|λ|∑

i=1

p(λ[i,|λ|])λi + spanZ{∆̃(α, β) : |αβ| < |λ|}. (6.20)

For this, we calculate, applying (6.17) twice at the second step,

∆̃(µ, ν) = ν − µν + p(ν)µ

∈ −µν − ∆̃(ν[0,|ν|−1], ν|ν|) +
|ν|∑

i=1

p(ν[i,|ν|])νi − p(ν)
(

∆̃(µ[0,|µ|−1], µ|µ|) +
|µ|∑

i=1

p(µ[i,|µ|])µi

)

+ spanZ

{
∆̃(α, β) : |αβ| < max{|µ|, |ν|}

}
.

Since each µ[i,|µ|]ν = (µν)[i,|µν|] = λ[i,|λ|] and since p is multiplicative, this gives

∆̃(µ, ν) ∈ −µν +
|λ|∑

i=1

p(λ[i,|λ|])λi +−∆̃(ν[0,|ν|−1], ν|ν|)− ∆̃(p(ν)µ[0,|µ|−1], µ|µ|)

+ spanZ

{
∆̃(α, β) : |αβ| ≤ max{|µ|, |ν|}

}
.

Since |µ|, |ν| < |λ|, we obtain (6.20). Since the terms −λ +
∑|λ|

i=1 p(λ
[i,|λ|−1])λi in the right-hand

side of (6.20) depend only on the product µν, we obtain (6.19).

Now, we suppose that im(∆̃1,1|ZE≥1) ∩ ZE1 6= {0} and derive a contradiction. Let l ∈ N

be minimal such that there exists a ∈ spanZ{(µ, ν) : |µν| ≤ l} with ∆̃(a) ∈ ZE1 \ {0}. Write
a =

∑
aµ,ν(µ, ν). For each (µ, ν) such that |µν| = l and 0 6= aµ,ν ∈ Z, Equation (6.19) gives

∆̃
(
aµ,ν

(
(µ1, (µν)[1,l])− (µ, ν)

))
∈ spanZ{∆̃(α, β) : |αβ| < l}.

Hence,

a′ := a+
∑

|µν|=l

aµ,ν

(
(µ1, (µν)[1,l])− (µ, ν)

)

satisfies ∆̃(a) − ∆̃(a′) ∈ spanZ{∆̃(α, β) : |αβ| < l}. Fix b ∈ spanZ{(α, β) : |αβ| < l} such that

∆̃(a) = ∆̃(a′) + ∆̃(b) = ∆̃(a′ + b). Let a′′ := a′ + b; by construction, a′′ ∈ spanZ{(µ, ν) : |µν| ≤ l}.
Write a′ =

∑
a′

µ,ν(µ, ν). Then a′
µ,ν = 0 for all (µ, ν) such that |µν| = l and |µ| > 1. Write

b =
∑
bµ,ν(µ, ν). Then bµ,ν = 0 for all µ, ν with |µν| = l. Hence a′′

µ,ν = 0 whenever |µν| = l and

|µ| > 1. We have ∆̃(a′′) = ∆̃(a) ∈ ZE1 \ {0}, and since l is minimal there exist ν ∈ El−1 and
e ∈ E1r(ν) such that a′′

e,ν 6= 0. We have

∆̃(a′′)eν =
∑

α∈E∗r(e)

a′′
α,eν −

∑

ηζ=eν

a′′
η,ζ +

∑

τ∈s(e)E∗

p(τ)a′′
eν,τ . (6.21)

By construction of a′′, the only nonzero term in (6.21) is −a′′
e,ν in the middle sum, so

∆̃(a′′)eν = −a′′
e,ν 6= 0,

which contradicts that ∆̃(a′′) ∈ ZE1. �
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Define Ms ∈ ME0,E1(Z) by Ms(v, e) = δv,s(e), regarded as a group homomorphism from ZE1 to
ZE0. Similarly, define Mr ∈ ME0,E1(Z) by Mr(v, e) = δv,r(e). Let P ∈ ME1(Z) be the diagonal
matrix P (e, f) = δe,fp(e). Finally, define M : ZE1 → ZE0 by

M := MrP −Ms. (6.22)

In matrix form, M ∈ME0,E1(Z) is given by

M(v, e) = p(e)δv,r(e) − δv,s(e) =





p(e) if v = r(e) and s(e) 6= r(e)

−1 if v = s(e) and s(e) 6= r(e)

p(e)− 1 if v = r(e) = s(e)

0 if v 6∈ {r(e), s(e)}.

Proposition 6.14. With Set-up 6.9, let M : ZE1 → ZE0 be the homomorphism (6.22). The

spectral sequence of Corollary 5.18 satisfies Evh,2
i,j = 0 whenever max{i, j} ≥ 2,

Evh,2
0,1
∼= H1(E), Evh,2

1,1
∼= ker(M), Evh,2

0,0
∼= H0(E), and Evh,2

1,0
∼= coker(M).

Proof. Lemma 6.11 gives Per((F ∗)q) = (F ∗)q, so Proposition 6.8 implies that Evh,2
p,• is isomorphic

to the homology of the chain complex
( ⊕

u∈E0 Z(Gu\uF
∗•),∆p,•

)
for p = 0, 1. Lemma 6.12 gives

isomorphisms κq : E∗q → G\F ∗q intertwining the ∆0,• with the categorical-homology boundary

maps for E, giving the descriptions of Evh,2
0,• .

Lemma 6.12 yields an isomorphism κ• :
( ⊕

u∈E0 ZuE∗•, ∆̃1,•

)
→

( ⊕
u∈E0 Z(Gu\uF

∗•),∆1,•

)
of

chain complexes induced by the κq. So Evh,2
1,•
∼= H•

( ⊕
u∈E0 ZuE∗•, ∆̃1,•

)
.

We have ∆̃1,0(µ) = p(µ)r(µ)− s(µ), giving Evh,2
1,0 = ZE0/ spanZ{p(µ)r(µ)− s(µ) : µ ∈ E∗}. Fix

µ ∈ E∗. The telescoping identity

p(µ)r(µ)− s(µ) =
|µ|∑

i=1

p(µi+1 . . . µ|µ|)
(
p(µi)r(µi)− s(µi)

)
,

gives spanZ{p(µ)r(µ)−s(µ) : µ ∈ E∗} ⊆ spanZ{p(e)r(e)−s(e) : e ∈ E1}. The reverse containment

is trivial. Since each p(e)r(e)− s(e) = Me, we deduce that Evh,2
1,0 = coker(M).

It remains to calculate Evh,2
1,1
∼= ker(∆̃1,0)/ im(∆̃1,1). Clearly, (ker(∆̃1,0) ∩ ZE1) + im(∆̃1,1) ⊆

ker(∆̃1,0). Conversely, if a ∈ ker(∆̃1,0), then Lemma 6.13 says that a = a′ + x for some a′ ∈ ZE1

and x ∈ im(∆̃1,1). Then ∆̃1,0(a′) = ∆̃1,0(a− x) = 0, so a′ ∈ ker(∆̃1,0) ∩ ZE1. Hence,

ker(∆̃1,0)

im(∆̃1,1)
=

(ker(∆̃1,0) ∩ ZE1) + im(∆̃1,1)

im(∆̃1,1)
∼=

ker(∆̃1,0) ∩ ZE1

im(∆̃1,1) ∩ ZE1
= ker(∆̃1,0|ZE1).

The restriction of ∆̃1,0 to ZE1 is M , so Evh,2
1,1
∼= ker(M). �

We obtain a computation of the homology of matched pairs (G, F ∗) as in Set-up 6.9.

Theorem 6.15. In the situation of Set-up 6.9, with M ∈ME0,E1(Z) as in (6.22),

H⊲⊳
0 (G, F ∗) ∼= H0(E), and H⊲⊳

2 (G, F ∗) ∼= ker(M),

and there is a short exact sequence

0 H1(E) H⊲⊳
1 (G, F ∗) coker(M) 0.
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Proof. This follows immediately from Lemma 6.3 and Proposition 6.14. �

Given a finite directed graph E, we define χ(E) := |E0| − |E1|, the Euler characteristic of E.

Corollary 6.16. In the situation of Set-up 6.9, suppose that vE∗w 6= ∅ for all v, w ∈ E0, and
that E1 6= ∅.

(i) If p(e) = 1 for all e ∈ E1, then

H⊲⊳
0 (G, F ∗) ∼= Z, H⊲⊳

1 (G, F ∗) ∼= Z2−χ(E), and H⊲⊳
2 (G, F ∗) ∼= Z1−χ(E).

(ii) If p(e) > 1 for some e ∈ E1, then coker(M) is a finite cyclic group,

H⊲⊳
0 (G, F ∗) ∼= Z and H⊲⊳

2 (G, F ∗) ∼= Z−χ(E),

and there is a short exact sequence

0 Z1−χ(E) H⊲⊳
1 (G, F ∗) coker(M) 0;

if gcd
{
p(µ)− p(ν) : µ, ν ∈ E∗, s(µ) = s(ν) and r(µ) = r(ν)

}
= 1, then coker(M) = 0 and

H⊲⊳
1 (G, F ∗) ∼= Z1−χ(E).

Proof. By [Mas91, p.194] (immediately after Theorem 3.4), H0(E) is the free abelian group gen-
erated by the connected components of E. Since vE∗w 6= ∅ for all v, w ∈ E0, this is a singleton.
So H0(E) = Z. This and [Mas91, Theorem 3.4] give H1(E) ∼= Z1−χ(E). We must compute ker(M)
and coker(M).

(i) Suppose that p(e) = 1 for all E. Lemma 6.11 gives ρi ≡ 1 for all i, and ∆1,q = ∆0,q for all q.

So ker(M) ∼= Evh,2
1,1
∼= Evh,2

0,1
∼= H1(E) ∼= Z1−χ(E) and coker(M) ∼= Evh,2

1,0
∼= Evh,2

0,0
∼= H0(E) ∼= Z. In

particular, coker(M) is free abelian, so the extension

0 H1(E) H⊲⊳
1 (G, F ∗) coker(M) 0

of Theorem 6.15 splits, giving the desired formulae for H⊲⊳
• (G, F ∗).

(ii) Now suppose that p(e) > 1 for some e. By assumption, there exists µ ∈ s(e)E∗r(e), and

p(eµ) = p(e)p(µ) > 1. For ν ∈ E∗, we have p(ν)r(ν) − s(ν) =
∑|ν|

i=1 p(ν
i+1 · · ·ν|ν|)(p(νi)r(νi) −

s(νi)) ∈ im(M). In particular, (p(eµ)−1)r(e) = p(eµ)r(eµ)−s(eµ) ∈ im(M), and so r(e)+im(M)
has finite order in coker(M).

Fix w ∈ E0. By assumption, there exists ν ∈ r(e)E∗w and so w + im(M) = w + p(ν)r(ν) −
s(ν) + im(M) = p(µ)r(e) + im(M). So coker(M) = Zr(e) + im(M) is a finite cyclic group.
Hence, rank(im(M)) = rank(ZE0) = |E0|, and Rank-Nullity for Z-modules gives rank(ker(M)) =
rank(ZE1)− rank(ZE0). Since ker(M) is a subgroup of a free abelian group, it is free abelian, so
ker(M) ∼= Z−χ(E). The formulae for H0 and H2 and the exact sequence involving H1 now follow
from Theorem 6.15.

Finally, suppose that gcd
{
p(µ)− p(ν) : µ, ν ∈ E∗, s(µ) = s(ν) and r(µ) = r(ν)

}
= 1. As above,

a := r(e) + im(M) generates coker(M). So it suffices to show that O(a) divides p(µ) − p(ν)
whenever s(µ) = s(ν) and r(µ) = r(ν). Fix v, w ∈ E0 and µ, ν ∈ vE∗w. We have (p(µ) −
p(ν))v = (p(µ)r(µ)− s(µ))− (p(ν)r(ν)− s(ν)) ∈ im(M). Fix α ∈ vE∗r(e). Then r(e) + im(M) =
r(e) + (p(α)r(α)− s(α)) + im(M) = p(α)v + im(M). In particular, (p(µ)− p(ν))r(e) + im(M) =
p(α)(p(µ)− p(ν))v + im(M) = 0 + im(M). So O(v + im(M)) divides p(µ)− p(ν). �
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Remark 6.17. The situation when p(e) = 1 for all e in Corollary 6.16 boils down to G ⊲⊳ F ∗ = Z×E∗,
so Corollary 6.16(i) is a nice reality check: it says that H⊲⊳

p (G, F ∗) =
⊕

i+j=pHi(Z) ⊗ Hj(E
∗), in

the spirit of the usual Künneth formula.

Example 6.18. Suppose that E is the directed graph with a single vertex v and a single edge
e, so χ(E) = 0. Fix p(e) ∈ N \ {0} and form the matched pair (G, F ∗) of Set-up 6.9. Then
H⊲⊳

0 (G, F ∗) ∼= H0(E) ∼= Z. The map M : ZE1 → ZE0 is ×(p(e) − 1), so we obtain an exact
sequence

0 Z H⊲⊳
1 (G, F ∗) Z/(p(e)− 1)Z 0.

If p(e) = 1, then H⊲⊳
1 (G, F ∗) ∼= Z2 and H⊲⊳

2 (G, F ∗) ∼= Z; if p(e) = 2 (the binary odometer), then
H⊲⊳

1 (G, F ∗) ∼= Z and H⊲⊳
2 (G, F ∗) = 0.

For p(e) > 2 the group cohomology H2(Z/(p(e)−1)Z;Z) ∼= Z/(p(e)−1)Z, so the exact sequence
in Corollary 6.16 (ii) does not completely determine H⊲⊳

1 (G, F ∗).

7. Twisted C∗-algebras of self-similar groupoid actions on k-graphs

We give two constructions of a twisted C∗-algebra from a self-similar action of a groupoid on a
k-graph as in Definition 3.33. This is a matched pair consisting of a groupoid and a k-graph in
which the left action preserves the degree map. Recall from Proposition 3.32 that these generalise
the faithful self-similar actions of groupoids on graphs and k-graphs of [LRRW18, ABRW19]. Our
self-similar actions are the examples of [LawV22] in which the generalised higher-rank k-graphs
are k-graphs.

Our first construction of such a C∗-algebra is twisted by a normalised 2-cocycle in C2
Tot(G,Λ;T)

and the second is twisted by a normalised 2-cocycle in C2
⊲⊳(G,Λ;T). We show that cohomologous

cocycles yield isomorphic twisted C∗-algebras, and that our two constructions are compatible via
the isomorphism of cohomology groups of Corollary 5.4. So all possible twisted C∗-algebras arise
via total 2-cycles.

We first study C∗-algebras twisted by categorical cocycles, and establish some elementary struc-
ture theory, including a gauge-invariant uniqueness theorem.

Recall from [KP00] that a k-graph Λ is row-finite and has no sources if 0 < |vΛn| < ∞ for
all v ∈ Λ0 and n ∈ Nk. Following [RS05] (see also [RSY04, Remark 2.3]), if Λ is a k-graph and
µ, ν ∈ Λ we define

MCE(µ, ν) := µΛ ∩ νΛ ∩ Λd(µ)∨d(ν).

Elements of MCE(µ, ν) are called minimal common extensions of µ and ν.
We adopt the usual conventions from the theory of C∗-algebras that homomorphisms are ∗-

homomorphisms, and that ideals are closed 2-sided ideals.

7.1. Twists by categorical cocycles. Given a normalised categorical 2-cocycle c : C2 → T and
a subcategory C′ ⊆ C, we write c for the restriction of c to (C′)2 ⊆ C2. Given a self similar action
of a groupoid G on a k-graph Λ, we regard G and Λ as subsets of G ⊲⊳ Λ; so gλ = (g ⊳ λ)(g ⊲ λ) for
(g, λ) ∈ G ∗ Λ.

Definition 7.1 (cf. [Yus23, ABRW19]). Let (G,Λ) be a self-similar action of a groupoid on a
row-finite k-graph with no sources. Let c : (G ⊲⊳ Λ)2 → T be a normalised categorical 2-cocycle. A
Toeplitz–Cuntz–Krieger (G,Λ; c)-family in a C∗-algebra A is a function t : G ⊲⊳ Λ→ A, such that

(TCK1) tζtη = δs(ζ),r(η)c(ζ, η)tζη for all (ζ, η) ∈ (G ⊲⊳ Λ)∗2,
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(TCK2) ts(ζ) = t∗ζtζ for all ζ ∈ G ⊲⊳ Λ,

(TCK3) for all µ, ν ∈ Λ we have tµt
∗
µtνt

∗
ν =

∑
λ∈MCE(µ,ν) tλt

∗
λ.

We call t a Cuntz–Krieger (G,Λ; c)-family if, in addition

(CK) tv =
∑

λ∈vΛn tλt
∗
λ for all v ∈ Λ0 and n ∈ Nk.

We write C∗(t) := C∗({tζ | ζ ∈ G ⊲⊳ Λ}) ⊆ A.

Remark 7.2. Relation (TCK2) for ζ = v ∈ Λ0 is t∗vtv = tv, so tv is a projection. Now (TCK2) for
any ζ implies that tζ is a partial isometry.

Relation (TCK1) implies that the tv, for v ∈ Λ0, are mutually orthogonal [KP00, Re-
marks 1.6(vi)]. So (TCK1)–(TCK3) say that {tλ : λ ∈ Λ} is a Toeplitz–Cuntz–Krieger (Λ, c)-
family as in [SWW14], and so induces a homomorphism ιtΛ : T C∗(Λ, c)→ A, which descends to a
homomorphism ιtΛ : C∗(Λ, c)→ A if t is a Cuntz–Krieger (G,Λ; c)-family.

If µ, ν ∈ Λ satisfy d(µ) = d(ν), then MCE(µ, ν) = {µ} if µ = ν and ∅ otherwise (see [SWW14,
Lemma 3.2]). So (TCK3) gives tµt

∗
µtνt

∗
ν = δµ,νtνt

∗
ν . Since c is normalised, (TCK1) implies that

tr(µ)tµ = tµ, so tµt
∗
µ ≤ tr(µ) for all µ ∈ Λ. Hence, as in [SWW14, Remark 3.4], every Toeplitz–

Cuntz–Krieger (G,Λ; c)-family satisfies

(TCK4) tv ≥
∑

λ∈vΛn tλt
∗
λ for all v ∈ Λ0 and n ∈ Nk.

Relation (TCK1) for g ∈ G gives tgtg−1 = c(g, g−1)tr(g), so tgc(g, g−1)tg−1 = tr(g). Uniqueness of

quasi-inverses in an inverse semigroup then forces c(g, g−1)tg−1 = t∗g, so g 7→ tg is a twisted unitary
representation of G à la [Ren80], and so induces a homomorphism ιtG : C∗(G, c)→ A.

The following standard arguments [Spe20, SWW14] show that every (G,Λ; c) admits a Toeplitz–
Cuntz–Krieger-family of nonzero partial isometries.

Example 7.3. By Example 3.16 and left cancellativity of k-graphs, G ⊲⊳ Λ is left cancellative.
Hence, for each ζ ∈ G ⊲⊳ Λ there is a partial isometry, Lζ ∈ B(ℓ2(G ⊲⊳ Λ)) such that Lζeη =
δs(ζ),r(η)c(ζ, η)eζη for all η ∈ G ⊲⊳ Λ. Routine calculations show that this determines a Toeplitz–
Cuntz–Krieger (G,Λ; c)-family L : G ⊲⊳ Λ→ B(ℓ2(G ⊲⊳ Λ)).

We claim that {LµLgL
∗
ν : µ, ν ∈ Λ, g ∈ G

s(µ)
s(ν)} is linearly independent. To see this fix a linear

combination a =
∑

µ,g,ν aµ,g,νLµLgL
∗
ν with at least one nonzero coefficient. Fix (µ, g, ν) such that

aµ,g,ν 6= 0 and aµ′,g′,ν′ = 0 whenever d(ν ′) < d(ν). Then L∗
ν′eν = 0 whenever aµ′,g,ν′ 6= 0 and ν ′ 6= ν.

Hence, ‖a‖ ≥ |(aeν | eµg)| = |aµ,g,ν | 6= 0.

Proposition 7.4. Let (G,Λ) be a self-similar action of a groupoid on a row-finite k-graph with
no sources. Let c : (G ⊲⊳ Λ)2 → T be a normalised categorical 2-cocycle. There is a C∗-algebra
T C∗(G,Λ; c) generated by a Toeplitz–Cuntz–Krieger (G,Λ; c)-family t that is universal for Toeplitz–
Cuntz–Krieger (G,Λ; c)-families: if T is a Toeplitz–Cuntz–Krieger (G,Λ; c)-family, then there is a
unique homomorphism πT : T C∗(G,Λ; c)→ C∗(T ) such that T = πT ◦ t.

Consider the ideal I of T C∗(G,Λ; c) generated by {tv −
∑

λ∈vΛn tλt
∗
λ | v ∈ Λ0}. Then s : ζ 7→

tζ + I is a Cuntz–Krieger (G,Λ; c)-family in C∗(G,Λ; c) := T C∗(G,Λ; c)/I, and is universal for
Cuntz–Krieger (G,Λ; c)-families: if S is a Cuntz–Krieger (G,Λ; c)-family, then there is a unique
homomorphism πS : C∗(G,Λ; c)→ C∗(S) such that S = πS ◦ s.

To prove Proposition 7.4, we follow the standard construction of [Bla85, Rae05, Lor10]. We first
need the following technical lemma.
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Lemma 7.5. Let (G,Λ) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. Let c : (G ⊲⊳ Λ)2 → T be a normalised categorical 2-cocycle. Fix (µ, g, ν) and (η, h, ζ) in
Λ ∗ G ∗ Λ, and for each (α, β) such that να = ηβ ∈ MCE(ν, η), define

ω(α, β) := c(ν, α)c(η, β)c(g, α)c(h−1, h)c(h−1, β) c(g ⊳ α, g ⊲ α)

× c(h−1 ⊲ β, h−1 ⊳ β)c(µ, g ⊲ α)c(ζ, h−1 ⊲ β)

× c(h−1 ⊳ β, (h−1 ⊳ β)−1)c(g ⊳ α, (h−1 ⊳ β)−1).

(7.1)

Then for any Toeplitz–Cuntz–Krieger (G,Λ; c)-family T , we have

TµTgT
∗
ν TηThT

∗
ζ =

∑

να=ηβ∈MCE(ν,η)

ωα,βTµ(g⊲α)T(g⊳α)(h−1⊳β)−1T ∗
ζ(h−1⊲β).

Proof. Relation (TCK3) implies that each

T ∗
ν Tη = T ∗

ν (TνT
∗
ν TηT

∗
η )Tη =

∑

να=ηβ∈MCE(ν,η)

T ∗
ν TναT

∗
ηβTη.

For fixed (α, β) in the above sum, relations (TCK1) and then (TCK2) give

T ∗
ν TναT

∗
ηβTη = c(ν, α)c(η, β)T ∗

ν TνTαT
∗
βT

∗
η Tη = c(ν, α)c(η, β)TαT

∗
β .

Fix να = ηβ ∈ MCE(ν, η). Remark 7.2 gives T ∗
βThT

∗
ζ = c(h−1, h)T ∗

βT
∗
h−1T ∗

ζ . We have

TgTα = c(g, α)Tgα = c(g, α)T(g⊲α)(g⊳α) = c(g, α)c(g ⊲ α, g ⊳ α)Tg⊲αTg⊳α,

and similarly,

T ∗
βT

∗
h−1 = c(h−1, β)c(h−1 ⊲ β, h−1 ⊳ β)T ∗

h−1⊳βT
∗
h−1⊲β .

We have

TµTg⊲α = c(µ, g ⊲ α)Tµ(g⊲α) and T ∗
h−1⊲βT

∗
ζ = c(ζ, h−1 ⊲ β)T ∗

ζ(h−1⊲β).

Finally,

Tg⊲αT
∗
h−1⊳β = c(h−1 ⊳ β, (h−1 ⊳ β)−1)Tg⊲αT(h−1⊳β)−1

= c(h−1 ⊳ β, (h−1 ⊳ β)−1)c(g ⊲ α, (h−1 ⊳ β)−1)T(g⊲α)(h−1⊳β)−1 .

Putting all of these identities together gives

TµTgT
∗
ν TηThT

∗
ζ =

∑

να=ηβ∈MCE(ν,η)

c(ν, α)c(η, β)TµTgTαT
∗
βThT

∗
ζ

=
∑

να=ηβ∈MCE(ν,η)

ωα,βTµ(g⊲α)T(g⊳α)(h−1⊳β)−1T ∗
ζ(h−1⊲β). �

Corollary 7.6 (cf. [LRRW18, Proposition 4.5]). Let (G,Λ) be a self-similar action of a groupoid on
a row-finite k-graph with no sources, and let c : (G ⊲⊳ Λ)2 → T be a normalised categorical 2-cocycle.
If T is a Toeplitz–Cuntz–Krieger (G,Λ; c)-family, then C∗(T ) = span{TµTgT

∗
ν : (µ, g, ν) ∈ Λ∗G∗Λ}.

Proof. The set X := span{TµTgT
∗
ν : (µ, g, ν)} is a closed subspace of C∗(T ). It is closed under

adjoints since TµTgT
∗
ν = c(g, g−1)T ∗

ν Tg−1T ∗
µ , and Lemma 7.5 shows that it is closed under multi-

plication, so X is a C∗-subalgebra of C∗(T ). Fix ζ ∈ G ⊲⊳ Λ. Proposition 3.13 gives a unique
factorisation ζ = µg with µ ∈ Λ and g ∈ G. So Tζ = c(µ, g)TµTgT

∗
s(g) ∈ X. So X contains the

generators of C∗(T ) giving X = C∗(T ). �
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Proof of Proposition 7.4. Consider the vector space V := Cc(Λ ∗ G ∗ Λ) of finitely supported
complex-valued functions on Λ ∗ G ∗ Λ, which has basis the indicator functions θµ,g,ν .

These θµ,g,ν are linearly independent, so there is a conjugate-linear map ∗ : V → V such that

θ∗
µ,g,ν = c(g, g−1)θν,g,µ, (7.2)

and there is a bilinear map · : V × V → V such that, for the scalars ωα,β defined in (7.1),

θµ,g,νθη,h,ζ =
∑

να=ηβ∈MCE(ν,η)

ωα,βθµ(g⊲α),(g⊳α)(h−1⊳β)−1,ζ(h−1⊲β). (7.3)

In the Toeplitz–Cuntz–Krieger (G,Λ; c)-family L of Example 7.3, the LµLgL
∗
µ are linearly in-

dependent, so there is a linear injection ϕL : V → B(ℓ2(G ⊲⊳ Λ)) satisfying ϕL(θµ,g,ν) = LµLgL
∗
ν .

Lemma 7.5 and bilinearity of multiplication in B(ℓ2(G ⊲⊳ Λ)) shows that ϕL intertwines (7.3) with
multiplication. Remark 7.2 shows that it carries (7.2) to the adjoint in B(ℓ2(G ⊲⊳ Λ)).

Since B(ℓ2(G ⊲⊳ Λ) is a ∗-algebra, we deduce that the operations we have defined on V satisfy
the ∗-algebra axioms, so V is a ∗-algebra. The θµ,g,ν are linearly independent, so for any Toeplitz–
Cuntz–Krieger (G,Λ; c)-family T there is a linear map ϕT : V → span{TµTgT

∗
ν : (µ, g, ν) ∈ Λ∗G∗Λ}

such that ϕT (θµ,g,ν) = TµTgT
∗
ν . Lemma 7.5 shows that ϕT is a homomorphism. The Tζ are partial

isometries, so for a =
∑

(µ,g,ν) aµ,g,νθµ,g,ν ∈ V , we have ‖ϕT (a)‖ ≤
∑

(µ,g,ν) |aµ,g,ν|. The map
ρ : V → [0,∞), given by

ρ(a) := sup{‖ϕT (a)‖ : T is a Toeplitz–Cuntz–Krieger (G,Λ; c)-family}

is a pre-C∗-seminorm. Quotienting by N := ker ρ and completing gives a C∗-algebra T C∗(G,Λ; c).

The map t : µg 7→ c(µ, g)θµ,g,s(g) +N is a Toeplitz–Cuntz–Krieger (G,Λ; c)-family in T C∗(G,Λ; c)
because N contains the obstructions to relations (TCK1)–(TCK3). This t is universal: for any
family T and any a ∈ V , we have ‖ϕT (a)‖ ≤ ‖ϕt(a)‖, so ϕT factors through a norm-decreasing
homomorphism from ϕt(V ) to ϕT (V ), which extends to a homomorphism πT : T C∗(Λ,G; c) →
C∗(T ) of C∗-algebras by continuity.

By definition of I, the map s is a Cuntz–Krieger (G,Λ; c)-family. Given any Cuntz–Krieger
(G,Λ; c)-family S, the kernel of the homomorphism πS : T C∗(Λ,G; c) → C∗(S) contains I, so πS

descends to a homomorphism C∗(Λ,G; c)→ C∗(S). �

Since Λ and G are subcategories of G ⊲⊳ Λ, if c : (Λ ∗ G)2 → T is a 2-cocycle then c|Λ2 and c|G2

are 2-cocycles on Λ and G, which we continue to denote by c.
Our next steps are to show that if G is amenable, then ιtG : C∗(G, c) → T C∗(G,Λ; c) from

Remark 7.2 is always injective, and follow Yusnitha’s analysis [Yus23] to see that her joint-
faithfulness condition implies that ιsG : C∗(G, c) → C∗(G,Λ; c) is faithful. We also show that
ιtΛ : T C∗(Λ, c)→ T C∗(G,Λ; c) and ιsΛ : C∗(Λ, c)→ C∗(G,Λ; c) are always injective.

If (G,Λ) is a self-similar action of a groupoid on a row-finite k-graph with no sources, then the
degree map dΛ : Λ → Nk determines a function dG⊲⊳Λ : G ⊲⊳ Λ → Nk by dG⊲⊳Λ(µ, g) = dΛ(µ) for all
(µ, g) ∈ Λ ∗ G = G ⊲⊳ Λ. We will just write d for both dΛ and dG⊲⊳Λ unless the subscript is needed
for clarity. Since d(g ⊲ µ) = d(µ) for all (g, µ) ∈ G ∗ Λ, for each ((µ, g), (ν, h)) ∈ (G ⊲⊳ Λ)2,

d((µ, g)(ν, h)) = d
(
µ(g ⊲ ν), (g ⊳ ν)h

)
= d(µ(g ⊲ ν)) = d(µν) = d(µ, g) + d(ν, h).

So d : G ⊲⊳ Λ→ Nk is a functor.
For each z ∈ Tk, the function γz(t) : G ⊲⊳ Λ → T C∗(G,Λ; c) defined by γz(t)(ζ) = zd(ζ)tζ is a

Toeplitz–Cuntz–Krieger (G,Λ; c)-family. By the universal property, γz extends to an endomorphism
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of T C∗(G,Λ; c). Since γz◦γw(sζ) = γzw(sζ) for all ζ ∈ G ⊲⊳ Λ, this γ is an action by automorphisms.
An ε/3-argument shows that it is strongly continuous. We call γ : Tk → Aut(T C∗(G,Λ; c)) the
gauge action, and write T C∗(G,Λ; c)γ for the fixed-point algebra {a ∈ T C∗(G,Λ; c) | γz(a) =
a for all z ∈ T}.

The same argument yields a strongly continuous action, also denoted γ and called the gauge
action, of T on C∗(G,Λ; c) such that γz(sζ) = zd(ζ)sζ for all ζ , and we likewise write C∗(G,Λ; c)γ

for the resulting fixed-point algebra.

Proposition 7.7 (cf. [Yus23, Proposition 3.6]). Let (G,Λ) be a self-similar action of a groupoid on
a row-finite k-graph with no sources, and let c : (G ⊲⊳ Λ)2 → T be a normalised categorical 2-cocycle.
The generators tζ of T C∗(G,Λ; c) and sζ of C∗(G,Λ; c) are all nonzero. The homomorphisms
ιtΛ : T C∗(Λ, c) → T C∗(G,Λ; c) and ιsΛ : C∗(Λ, c) → C∗(G,Λ; c) are injective. If G is amenable,
then ιtG : C∗(G, c)→ T C∗(G,Λ; c) is injective. If, in addition, for every v ∈ Λ0 and every n ∈ Nk,
there exists λ ∈ vΛn such that g 7→ (g ⊳ λ, g ⊲ λ) is injective on Gv

v , then ιsG : C∗(G, c)→ C∗(G,Λ; c)
is injective.

Proof. Let L : G ⊲⊳ Λ → B(ℓ2(G ⊲⊳ Λ)) be the Toeplitz–Cuntz–Krieger (G,Λ; c)-family of Exam-
ple 7.3. Since the Lv are nonzero, the universal property of T C∗(G,Λ; c) implies that the tv are
nonzero. As each ‖tζ‖

2 = ‖t∗ζtζ‖ = ‖ts(ζ)‖, the tζ are all nonzero. For each v ∈ Λ0 and n ∈ Nk, we

have (Lv −
∑

µ∈vΛn LµL
∗
µ)ev = ev 6= 0, so [SWW14, Theorem 3.15] implies that ΠL ◦ ιtΛ is injective,

and hence ιtΛ itself is injective.
To see that the sζ are all nonzero, we follow the argument of [Yus23]. For each v ∈ Λ0 and

n ∈ Nk, the projection ∆n,v := Lv −
∑

λ∈vΛn LλL
∗
λ vanishes on span{eλg : d(λ) ≥ n}. A direct

calculation using that d(g ⊲ λ) = d(λ) for all λ, shows that LλLgL
∗
µ∆n,vLνLhL

∗
ηeζg = 0 whenever

d(ζ) > d(η) and d(ζ)−d(η)+d(ν) ≥ n. In particular, for a ∈ span{LλLgL
∗
µ∆n,vLνLhL

∗
η : λ, µ, ν, η ∈

Λ, g, h ∈ G, n ∈ Nk, v ∈ Λ0}, regarding Nk as a directed set, limn∈Nk

∥∥∥a|span{eζg : ζ∈Λn,g∈G}

∥∥∥ = 0. An
approximation argument gives

lim
n∈Nk

∥∥∥πL(a)|span{eζg : ζ∈Λn,g∈G}

∥∥∥ = 0 for all a ∈ I. (7.4)

Fix v ∈ Λ0, n ∈ Nk, and ζ ∈ vΛn. Then ‖Lveζ‖ = ‖eζ‖ = 1, and so

lim
n∈Nk

∥∥∥πL(tv)|span{eζg : ζ∈Λn,g∈G}

∥∥∥ = 1.

Hence, tv 6∈ I, so sv = tv + I 6= 0. Now by (TCK2), each ‖sζ‖
2 = ‖sζs

∗
ζ‖ = ‖ss(ζ)‖ > 0. The

homomorphism ιsΛ intertwines the gauge actions of Tk on C∗(Λ, c) and C∗(G,Λ; c), so the gauge-
invariant uniqueness theorem [KPS15, Corollary 7.7] implies that ιsΛ is injective.

The subspace ℓ2(G) ⊆ ℓ2(G ⊲⊳ Λ) is invariant for πL
G : C∗(G, c)→ B(ℓ2(G ⊲⊳ Λ)), and the reduction

of πL to ℓ2(G) is the left regular representation λ of C∗(G, c). Since G is amenable, λ is faithful, so
πL

G = πL ◦ ιtG is injective, and hence ιtG is injective.

Finally, fix v ∈ Λ0, n ∈ Nk, and λ ∈ Λ such that g 7→ (g ⊲ λ, g ⊳ λ) is injective on G
r(λ)
r(λ) . Again

following Yusnitha [Yus23, Proposition 3.6], the space Hn,λ := span{egλ : g∈Gv
v
} is invariant for

{Lg : g ∈ Gv
v}, and egλ 7→ c(g, λ)eg induces an isomorphism U : Hn,λ → ℓ2(Gv

v ) that intertwines the
reduction of πL|C∗(Gv

v ,c) with the regular representation. Since G is amenable, so is Gv
v and so the

reduction of πL|C∗(Gv
v ,c) toHn,λ is faithful. So, for a ∈ C∗(Gv

v , c), we have
∥∥∥πL(a)|span{eζg : ζ∈Λn,g∈G}

∥∥∥ =

‖a‖ for all n. So by (7.4), a 6∈ I, so ιsG is injective on each C∗(Gv
v , c).
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Fix a subset V ⊆ G0 that intersects each G-orbit exactly once. Then PV =
∑

v∈V δv ∈MC∗(G, c)
is a full projection, and PVC

∗(G, c)PV
∼=

⊕
v∈V C

∗(Gv
v , c). Since ιGs is injective on this full corner,

it is injective on all of C∗(G, c). �

Remark 7.8. Let (G,Λ) be a self-similar action of an amenable groupoid on a row-finite k-graph
with no sources, and let c : (G ⊲⊳ Λ)2 → T be a normalised categorical 2-cocycle. Proposition 7.7
shows that T C∗(G,Λ; c) is generated copies of T C∗(Λ; c) and C∗(G, c). It would be interesting
to determine when T C∗(G,Λ; c) is a C∗-blend of these two subalgebras in the sense of [Exe13];
or when C∗(G,Λ; c) is a blend of C∗(Λ, c) and C∗(G, c) (the corresponding result for Zappa–Szép
products of Fell bundles over groupoids appears in [DL23, Theorem 5.4]). For example, it seems
likely that a contracting condition like that of [LRRW18, Section 9] or [Nek05, Section 2.11] implies
that each spanning element sµsgs

∗
ν of C∗(G,Λ; c) belongs to span{sαs

∗
βsg | α, β ∈ Λ, g ∈ G}. But

we do not pursue this question here.

We now prove a gauge-invariant uniqueness theorem for C∗(G,Λ; c). This by-now ubiquitous tool
in the study of C∗-algebras of graphs and related objects goes back to [aHR97]. Our argument in
the context of twisted C∗-algebras of self-similar actions on k-graphs generalises those of [LRRW18,
ABRW19, Yus23] for untwisted actions on graphs and k-graphs; our analysis of the core is heavily
based on Yusnitha’s [Yus23].

Proposition 7.9 (cf. [Yus23, Lemma 4.10]). Let (G,Λ) be a self-similar groupoid action on a
row-finite k-graph with no sources. Let c : (G ⊲⊳ Λ)2 → T be a normalised categorical 2-cocycle.
Then

C∗(G,Λ; c)γ = span
{
sµsgs

∗
ν : µ, ν ∈ Λ, d(µ) = d(ν), g ∈ G

s(µ)
s(ν)

}
.

Let S be a Cuntz–Krieger (Λ,G; c)-family, and suppose that πS : C∗(G,Λ; c) → C∗(S) is injective
on ιsG(C∗(G, c)). Then πS is injective on C∗(G,Λ; c)γ.

Proof. Let Φ: C∗(G,Λ; c)→ C∗(G,Λ; c)γ be the faithful conditional expectation satisfying Φ(a) =∫
Tk γz(a) dz [Rae05, Proposition 3.2]. Then Φ(sµsgs

∗
ν) = δd(µ),d(ν)sµsgs

∗
ν , and so

C∗(G,Λ; c)γ = Φ(C∗(G,Λ; c)) = Φ
(

span
{
sµsgs

∗
ν : µ, ν ∈ Λ, g ∈ G

s(µ)
s(ν)

})

= span
{
sµsgs

∗
ν : µ, ν ∈ Λ, d(µ) = d(ν), g ∈ G

s(µ)
s(ν)

}
.

For fixed n ∈ Nk,

Fn := span
{
sµsgs

∗
ν : µ, ν ∈ Λn, g ∈ Gs(µ)

s(ν)

}

is a C∗-subalgebra of C∗(G,Λ; c)γ. If m,n ∈ Nk, µ, ν ∈ Λm, and g ∈ G
s(µ)
s(ν) , then

sµsgs
∗
ν = sµsg

∑

τ∈s(g)Λn

sτs
∗
τs

∗
ν =

∑

τ∈s(g)Λn

c(g, τ)c(g ⊲ τ, g ⊳ τ)sµsg⊲τsg⊳τs
∗
τs

∗
ν

=
∑

τ∈s(g)Λn

c(µ, g ⊲ τ)c(ν, τ)c(g, τ)c(g ⊲ τ, g ⊳ τ)sµg⊲τsg⊳τs
∗
ντ ∈ Fm+n.

So Fm ⊆ Fm+n and C∗(G,Λ; c)γ =
⋃

n Fn. So to see that πS is injective on C∗(G,Λ; c)γ, it suffices
to show that it is injective, and hence isometric, on each Fn.

Fix n ∈ Nk. Consider the equivalence relation ∼ on Λn such that λ ∼ µ if and only if G
s(λ)
s(µ) 6= ∅.

Let K ⊆ Λn be a set of representatives of Λn/∼. For λ ∈ Λn, there exists µ ∈ K with µ ∼ λ, say

g ∈ G
s(λ)
s(µ) . So sλs

∗
λ = sλugs

∗
µ(sµs

∗
µ)sµu

∗
gsλ. Since

∑
λ∈Λn sλs

∗
λ is an approximate identity for Fn it
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follows that PK :=
∑

λ∈K sλs
∗
λ is a full projection inMFn. So it suffices to show that πS is injective

on PKFnPK .
For distinct λ, µ ∈ K we have sλs

∗
λFksµs

∗
µ = {0} by definition of ∼, and so PkFkPk

∼=⊕
λ∈K sλs

∗
λFksλs

∗
λ. So it suffices to show that πS is injective on each sλs

∗
λFksλs

∗
λ.

Fix λ ∈ K, and let v := s(λ). Since the sµs
∗
µ, for µ ∈ Λn, are mutually orthogonal, sλs

∗
λFksλs

∗
λ =

span{sλsgs
∗
λ : g ∈ Gv

v}. Conjugation by sλ is an isomorphism of this subalgebra onto span{sg : g ∈
Gv

v}. Similarly, span{SλSgS
∗
λ : g ∈ Gv

v}
∼= span{Sg : g ∈ Gv

v} via conjugation by Sλ. Since πS(sλ) =
Sλ, and πS is injective on span{sg : g ∈ Gv

v}, the result follows. �

We obtain a version of an Huef and Raeburn’s gauge-invariant uniqueness theorem [aHR97].

Corollary 7.10 (The Gauge-Invariant Uniqueness Theorem). Let (G,Λ) be a self-similar action
of a groupoid on a row-finite k graph with no sources, and let c : (G ⊲⊳ Λ)2 → T be a normalised
categorical 2-cocycle. Let S be a Cuntz–Krieger (G,Λ; c) family in a C∗-algebra A. If there is a
strongly-continuous action β : Tk → Aut(A) such that βz(Sζ) = zd(ζ)sζ for all ζ ∈ G ⊲⊳ Λ, and if
πS : C∗(G,Λ; c)→ C∗(S) is injective on ιsG(C∗(G, c)), then πS is injective.

Proof. The assumptions combined with Proposition 7.9 show that πS is injective on C∗(G,Λ; c)γ.
Define Γ: A→ A by Γ(a) =

∫
Tk βz(a) dz. Since βz ◦π

S = πS ◦ γz for all z, we have πS ◦Φ = Γ ◦πS,
and then [SWW14, Lemma 3.14] shows that πS is injective. �

We now show that the isomorphism class of the twisted C∗-algebra of a self-similar action of
a groupoid on a k-graph depends only on the cohomology class of the twisting 2-cocycle. The
argument is standard; see, for example, [KPS15, Proposition 5.6].

Proposition 7.11. Let (G,Λ) be a self-similar action on a row-finite k-graph with no sources, and
let c1, c2 : (G ⊲⊳ Λ)2 → T be normalised categorical 2-cocycles. Suppose that b : G ⊲⊳ Λ → T is a
categorical 1-cochain such that d1

⊲⊳(b)c1 = c2. For i = 1, 2 let ti be the universal Toeplitz–Cuntz–
Krieger family in T C∗(G,Λ; ci). Then there is an isomorphism θb : T C∗(G,Λ; c2)→ T C

∗(G,Λ, c1)
such that θb(t

2
ζ) = b(ζ)t1ζ for all ζ ∈ G ⊲⊳ Λ. This isomorphism descends to an isomorphism

θ̃b : C∗(G,Λ; c2)→ C∗(G,Λ, c1).

Proof. Define bt : G ⊲⊳ Λ→ T C∗(G,Λ; c1) by (bt)ζ := b(ζ)t1ζ. For (ζ, η) ∈ (G ⊲⊳ Λ)2,

(bt)ζ(bt)η = b(ζ)t1ζb(η)t1η = b(ζη)d1(b)(ζ, η)c1(ζ, η)t1ζη = c2(ζ, η)(bt)ζη.

So bt satisfies (TCK1). It also satisfies (TCK2) and (TCK3), and satisfies (CK) if and only if t

does, because the factors of b(ζ) and b(ζ) in these relations cancel.
The universal property of T C∗(G,Λ; c2) gives a homomorphism θb : T C∗(G,Λ; c2)→ T C

∗(G,Λ, c1)

such that θb(t
2
ζ) = b(ζ)t1ζ for all ζ ∈ G ⊲⊳ Λ, which descends to a homomorphism θ̃b : C∗(G,Λ; c2)→

C∗(G,Λ, c1). Since d1(b)c2 = c1, there is a corresponding homomorphism θb : T C∗(G,Λ; c1) →

T C∗(G,Λ, c2) such that θb(t
2
ζ) = b(ζ)t1ζ , which also descends to Cuntz–Krieger algebras. Since

θb ◦ θb and θb ◦ θb fix the generators tiζ , they are the identity homomorphisms, and this descends to
Cuntz–Krieger algebras as well. �

7.2. Twists by total 2-cocycles. We describe the twisted C∗-algebra of a self-similar action on
k-graph with respect to a total 2-cocycle, and show that we obtain the same class of C∗-algebras
as for categorical cohomology.
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Definition 7.12. Let (G,Λ) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. A function ϕ : G2 ⊔ (G ∗Λ)⊔Λ2 → T is a normalised total T-valued 2-cocycle on (G,Λ), if
ϕ2,0 := ϕ|G2 , ϕ1,1 := ϕ|G∗Λ and ϕ0,2 := ϕ|Λ2 satisfy

(i) ϕ2,0 : G2 → T is a normalised T-valued 2-cocycle in the sense of [Ren80];

(ii) ϕ0,2 : Λ2 → T is a normalised T-valued categorical 2-cocycle in the sense of [KPS15]; and

(iii) ϕ1,1(h, λ) = 1 whenever h ∈ G0, or λ ∈ Λ0, and for (g, h, λ, µ) ∈ G ∗ G ∗ Λ ∗ Λ,

ϕ1,1(h ⊳ λ, µ)ϕ1,1(h, λµ)ϕ1,1(h, λ)ϕ0,2(λ, µ)ϕ0,2(h ⊲ (λ, µ)) = 1 and

ϕ2,0((g, h) ⊳ λ)ϕ2,0(g, h)ϕ1,1(h, λ)ϕ1,1(gh, λ)ϕ1,1(g, h ⊲ λ) = 1.

Remark 7.13. In defining a normalised total T-valued 2-cocycle we have just written out explicitly
what it means for ϕ to be a cocycle in C2

Tot(G,Λ;T). This can be verified by computing what
it means for a cochain to be in the kernel d2

Tot : C2
Tot(G,Λ;T) → C3

Tot(G,Λ;T) which satisfies
d2

Tot ◦ ϕ = ϕ ◦ dTot
2 , where dTot

2 is from Section 4.4.

Definition 7.14. Let (G,Λ) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. Fix a normalised cocycle ϕ ∈ C2

Tot(G,Λ;T) and let A be a C∗-algebra. A pair of functions
t : Λ→ A and w : G → A is a Toeplitz ϕ-pair if:

(T1) t is a Toeplitz–Cuntz–Krieger (Λ, ϕ0,2)-family in the sense of [SWW14],

(T2) w is a unitary representation of (G, ϕ2,0), and

(T3) wgtλ = ϕ1,1(g, λ)tg⊲λwg⊳λ for all (g, λ) ∈ G ∗ Λ.

We call (w, t) a Cuntz–Krieger ϕ-pair if t is a Cuntz–Krieger (Λ, ϕ0,2)-family.

With Ψ• : C⊲⊳
• (G,Λ)→ CTot

• (G,Λ) as in Subsection 5.1.3, define Ψ• : C•
Tot(G,Λ;T)→ C•

⊲⊳(G,Λ;T)
by Ψk = ϕ ◦Ψk. Then Ψ• induces an isomorphism on cohomology. On 2-cochains,

Ψ2(ϕ)(λg, µh) = ϕ2,0(g ⊳ µ, h)ϕ1,1(g, µ)ϕ0,2(λ, g ⊲ µ)

for all (λ, g, µ, h) ∈ Λ ∗ G ∗ Λ ∗ G.
We show that T C∗(G,Λ; Ψ2(ϕ)) is universal for Toeplitz ϕ-pairs, and C∗(G,Λ; Ψ2(ϕ)) is universal

for Cuntz–Krieger ϕ-pairs.

Theorem 7.15. Let (G,Λ) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. Fix a normalised cocycle ϕ ∈ C2

Tot(G,Λ;T) and let c := Ψ2(ϕ) ∈ C2
⊲⊳(G,Λ;T).

(i) Let t : G ⊲⊳ Λ → T C∗(G,Λ; c) be the universal Toeplitz–Cuntz–Krieger (G,Λ; c)-family.
There is a Toeplitz ϕ-pair t,w in T C∗(G,Λ; c) given by t = t|Λ and w = t|G. Moreover
T C∗(G,Λ; c) is generated by the ranges of t and w, and is universal in the sense that given
any Toeplitz ϕ-pair t′,w′ in a C∗-algebra A, there is a homomorphism ρ : T C∗(G,Λ; c)→ A
such that ρ ◦ t = t

′ and ρ ◦w = w
′.

(ii) Let s : G ⊲⊳ Λ→ C∗(G,Λ; c) be the universal Cuntz–Krieger (G,Λ; c)-family. Then there is a
Cuntz–Krieger ϕ-pair s, u in C∗(G,Λ; c) given by s = s|Λ and u = s|G. Moreover C∗(G,Λ; c)
is generated by the ranges of s and u, and is universal in the sense that given any Cuntz–
Krieger ϕ-pair s

′, u′ in a C∗-algebra A, there is a homomorphism ρ : C∗(G,Λ; c)→ A such
that ρ ◦ s = s

′ and ρ ◦ u = u
′.

The theorem follows from the following correspondence between ϕ pairs and (G,Λ; c)-families.
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Lemma 7.16. Let (G,Λ) be a self-similar action of a groupoid on a row-finite k-graph with no
sources. Fix a normalised cocycle ϕ ∈ C2

Tot(G,Λ;T) and let c := Ψ2(ϕ) ∈ C2
⊲⊳(G,Λ;T). If t, w is a

Toeplitz ϕ-pair in a C∗-algebra A, then

tλg := tλwg

defines a Toeplitz–Cuntz–Krieger (G,Λ; c)-family in A. If t is a Toeplitz–Cuntz–Krieger (G,Λ; c)-
family in A, then tλ := tλ for λ ∈ Λ and wg := tg for g ∈ G defines a Toeplitz ϕ-pair. Moreover,
t,w is a Cuntz–Krieger ϕ-pair if and only if t is a Cuntz–Krieger (G,Λ; c)-family.

Proof. For g ∈ G and λ ∈ s(g)Λ,

c(g, λ) = c(r(g)g, λs(λ)) = ϕ2,0(g ⊳ λ, s(λ))ϕ1,1(g, λ)ϕ0,2(r(g), g ⊲ λ) = ϕ1,1(g, λ).

Also, for h ∈ G and µ ∈ Λr(h), since v ⊳ v = v ⊲ v = v for v ∈ Λ0 = G0, we have

c(µ, h) = c(µs(µ), r(h)h) = ϕ2,0(r(h), h)ϕ1,1(s(µ), r(h))ϕ0,2(µ, s(µ)) = 1.

Hence, if g ∈ G and λ ∈ s(g)Λ, we have

c(g, λ)c(g ⊲ λ, g ⊳ λ) = c(g, λ)1 = ϕ1,1(g, λ). (7.5)

Suppose that t,w is a Toeplitz ϕ-pair. If λg, µh are composable in G ⊲⊳ Λ, then

tλwgtµwh = ϕ1,1(g, µ)tλtg⊲µwg⊳µwh

= ϕ2,0(λ, g ⊲ µ)ϕ1,1(g, µ)ϕ0,2(g ⊳ µ, h)tλ(g⊲µ)w(g⊳µ)h

= c(λg, µh)tλ(g⊲µ)w(g⊳µ)h,

so t : λg 7→ tλwg satisfies (TCK1). For (TCK2), we calculate

t∗λgtλg = w
∗
gt

∗
λtλwg = w

∗
gts(λ)wg = w

∗
gwg = ws(g) = ss(λg).

Relation (TCK3) follows from (T1) by definition of a Toeplitz–Cuntz–Krieger (Λ, ϕ0,2)-family.
Now suppose that t is a Toeplitz–Cuntz–Krieger (G,Λ; c)-family, and define t = t|G and w = t|Λ.

We have tv = wv for v ∈ Λ0 because G0 = Λ0.
Remark 7.2 implies that t and w satisfy (T1) and (T2). For (T3), we calculate

wgtλ = tgtλ
(7.5)
= c(g, λ)c(g ⊲ λ, g ⊳ λ)tg⊲λtg⊳λ = ϕ1,1(g, λ)tg⊲λwg⊳λ.

So t, w is a Toeplitz ϕ-pair. For the final assertion, observe that
∑

λ∈vΛn

tλt
∗
λ =

∑

λ∈vΛn

tλws(λ)w
∗
s(λ)t

∗
λ =

∑

λ∈vΛn

tλt
∗
λ. �

Proof of Theorem 7.15. (i) The second statement of Lemma 7.16 shows that t,w is a Toeplitz ϕ-
pair. It generates T C∗(G,Λ; c) because each tλg = c(λ, g)tλtg = c(λ, g)tλwg; and given a Toeplitz
ϕ-pair t

′,w′, the first statement of Lemma 7.16 shows that t′λg := t
′
λw

′
g defines a Toeplitz–Cuntz–

Krieger (G,Λ; c)-family. So the universal property of T C∗(G,Λ; c) gives a homomorphism ρ such
that ρ(tλg) = t′λg. In particular, ρ(tλ) = t

′
λ, and ρ(wg) = w

′
g.

(ii) Apply (i) together with the final statement of Lemma 7.16. �
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