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Abstract. We determine the primitive ideal space and hence the ideal lattice of a large
class of separable groupoid C∗-algebras that includes all 2-graph C∗-algebras. A key
ingredient is the notion of harmonious families of bisections in étale groupoids associated
to finite families of commuting local homeomorphisms. Our results unify and recover all
known results on ideal structure for crossed products of commutative C∗-algebras by free
abelian groups, for graph C∗-algebras, and for Katsura’s topological graph C∗-algebras.
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1. Introduction

Background. The lattice of ideals of a C∗-algebra is a fundamental structural feature
that is notoriously difficult to compute. In the case of commutative C∗-algebras, type I
C∗-algebras (e.g. continuous trace C∗-algebras), and other continuous fields of simple
C∗-algebras, or just-infinite C∗-algebras [GMR18] the primitive ideal space is a key piece
of data for classifying the C∗-algebras [GN43, DD63, GMR18]. However, in most cases
where C∗-algebras are built from dynamical or combinatorial data such as shifts of finite
type [CK80], local homeomorphisms [Ren80, Dea95, A-D97, ER07], or directed graphs
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(and their higher-rank analogues) [Rae05], work has focussed on conditions that ensure
simplicity [KPR98, KP00], or that reduce the complexity of the ideal structure of the
C∗-algebra of a dynamical system [Ren91, BHRS02, WvW21]; perhaps due to the Elliott
classification program (see, for example, [Ell76, Ell93, Phi00, Kir95, TWW17, Win17])
whereby simple C∗-algebras can be classified by K-theory and traces.

Cuntz [Cu81] determined the ideal structure of non-simple Cuntz–Krieger algebras as-
suming condition (II) in terms of the irreducible components of the underlying shift of
finite type. Cuntz’ condition (II) ensures that all ideals are gauge-invariant (such ideals
are called dynamical in our companion paper [BCS22]). The later groundbreaking work
of an Huef and Raeburn [aHR97] further developed this technique and classified all gauge-
invariant ideals of non-simple Cuntz–Krieger algebras. This was shortly followed by com-
plete results for graph algebras [HS04], and very recently for topological graphs (via
actions of N by local homeomorphisms) [Kat21]. The key idea of an Huef and Raeburn
underpins both analyses: the primitive ideals are indexed by a quotient of X×T, where X
is the space of infinite paths; and the hull-kernel topology is computed using a sandwich-
ing lemma: each primitive ideal is sandwiched between a pair of gauge-invariant ideals for
which the subquotient is Morita equivalent to a crossed product of the form C0(U)⋊ Z.

As a result of a significant program dating back to work of Mackey [Mac51], Rieffel
[Rie74], and Green [Gre80], the primitive-ideal spaces of such crossed products are well
understood (see, for example, [Wi07]): if X is a second-countable locally compact Haus-
dorff space and G is a second-countable locally compact abelian group acting on X, then
there is an equivalence relation on X × Ĝ such that (x, χ) ∼ (y, ρ) if x and y have the
same orbit closure, and χρ annihilates the stabiliser of x. Each (x, χ) determines an ir-
reducible representation πx,χ of C0(X)⋊G on L2(G · x), and the kernels of πx,χ and πy,ρ
coincide precisely if (x, χ) ∼ (y, ρ). So π : (x, χ) → ker(πx,χ) descends to a bijection from
(X× Ĝ)/∼ onto Prim(C0(X)⋊G), and it transpires that this map is in fact a homeomor-
phism. Few other general results on ideal structure of C∗-algebras of dynamical systems
like groupoids are available in the literature, beyond those such as Bönicke and Li’s results
[BL20] on strongly effective étale groupoids for which every ideal is dynamical, and those
of van Wyk and Williams [WvW21] in which continuity conditions are imposed on the
isotropy groups. Katsura’s results [Kat21] are the furthest reaching results that do not
impose regularity conditions on isotropy groups.

Our results. In this paper, we make substantial new progress on the problem of ideal
structure in separable C∗-algebras of étale groupoids. Our main result Corollary 7.6 (see
also Theorem 7.1) describes a base for the topology of the primitive ideal space, for a large
class of separable C∗-algebras. The formal statement of the result is complicated, but we
show by example that in many cases of interest our description is genuinely computable
(see, for example, Section 11). In particular, our results are the first of their kind to cover
large classes of higher-rank graph C∗-algebras including all row-finite 2-graphs with no
sources.

The specific class of C∗-algebras that we study are those arising from actions T : Nk ↷
X by local homeomorphisms of second-countable locally compact Hausdorff spaces X. All
the cases mentioned above (actions by free abelian groups, shifts of finite type, directed
graphs, and Katsura’s topological graphs) provide examples of such actions. The associ-
ated topological groupoid GT (sometimes referred to as the Deaconu–Renault groupoid) is
well behaved in the sense that it is second-countable locally compact Hausdorff, amenable,
and étale. Conceptually, GT can be regarded as a proxy for the orbit space of T .

For such actions, Sims and Williams [SW16, Theorem 3.2] discover a surjective map

π : X × Tk → Prim(C∗(GT ))
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and an equivalence relation on X × Tk (akin to the equivalence relation in the case of
crossed products mentioned above) such that π(x, z) = π(x′, z′) precisely when (x, z) and
(x′, z′) are equivalent. Importantly, the map π is a parameterisation and so does not a
priori say anything about the hull-kernel topology on the primitive ideal space. The sand-
wiching lemma for general étale groupoids in our companion paper [BCS22, Lemma 3.6]
applies to this setting, so every ideal is optimally sandwiched between dynamical ideals.
However, the resulting subquotients do not admit natural descriptions as crossed prod-
ucts, and the approach of [aHR97, HS04, Kat21] does not naturally extend to this set-
ting; moreover, the isotropy-group bundle is typically badly discontinuous, so the results
of [WvW21] do not apply either. Without access to the powerful Mackey–Green–Rieffel
machine, that has underpinned previous analyses, we needed a new approach.

We describe the ideals in C∗(GT ) by directly analysing which subsets of X × Tk are
preimages under π of open sets in Prim(C∗(GT )). To do this, we introduce the essential
isotropy (Definition 2.1) of GT that will play a key role; in particular, it determines certain
isotropy subgroups Jx over a unit x. We first describe a necessary condition for a subset
A of X × Tk to be the preimage of an open set in terms of a family B = (Bα)α∈Jx of
homogeneous open bisections of GT indexed by the isotropy subgroups Jx where x is a
unit in the the projection of A onto X. Given any such family (Bα)α∈Jx of bisections,
we write Bess for its intersection with the essential isotropy. We identify a system of B-
saturated subsets (U×V ) ·(Bess)⊥ of X×Tk, indexed by pairs (U, V ) consisting of an open
neighbourood U of x and an open subset V of Tk, with the property that if A ⊆ X×Tk is
the preimage of an open set of primitive ideals and contains a point (x, z) ∈ X×Tk, then
there is a pair (U, V ) such that (x, z) ∈ U × V , and (U × V ) · (Bess)⊥ is contained in A
(Theorem 4.2). This, our first main result, applies to any GT and gives useful information
about ideal structure; in particular, it follows that π is continuous (Corollary 4.4).

Theorem. Let X be a locally compact Hausdorff space and suppose that T : N2 ↷ X is an
action by local homeomorphisms. The surjection π : X × Tk → Prim(C∗(GT )) described
above (cf. [SW16]) is continuous.

Next, we aim for a complete description of the ideal structure. The key idea is the notion
of harmonious families of bisections (Definition 6.1). These are families of bisections B as
above, whose intersections with the essential isotropy of GT satisfy additional consistency
conditions. These conditions allow us to employ harmonic analysis on Tk = Ẑk to prove
a kind of noncommutative Urysohn lemma (Proposition 7.2): given a harmonious family
of bisections B = (Bα)α∈Jx , a point z ∈ Tk and open neighbourhoods U of x and V of
z, we construct an element of C∗(GT ) that does not belong to the ideal π(x, z) but does
belong to π(y, w) for all (y, w) in the complement of (U × V ) · (Bess)⊥. We believe this
result is of independent interest, but here it is the engine room of our proof that the sets
(U×V )·(Bess)⊥ are preimages of open sets (Theorem 7.1). Our main result (Corollary 7.6)
uses this to describe a base for the topology on Prim(C∗(GT )):

Theorem. Let X be a second-countable locally compact Hausdorff space and suppose that
T : Nk ↷ X is an action by local homeomorphisms that admits harmonious families of
bisections. A base for the hull-kernel topology of Prim(C∗(GT )) is given by sets of the
form

π((U × V ) · (Bess)⊥)

where B is a harmonious family of bisections at a unit x, U is an open neighbourhood of
x, and V is open in Tk.

In particular, we recover known results about effective groupoids: if GT is minimal and
effective then the primitive ideal space is a singleton (so C∗(GT ) is simple); and if GT is
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strongly effective, then the primitive ideal space is homeomorphic to the quasi-orbit space
of GT .

Using our main theorem, we provide an explicit description of the lattice of ideals
of C∗(GT ) in terms of subsets of X × Tk (Proposition 8.2), and a characterisation of
convergence of sequences in Prim(C∗(GT )) (Theorem 9.5).

At present, we do not know whether every action by commuting local homeomorphisms
admits harmonious families of bisections, but we confirm this for actions by free abelian
groups, (topological) graphs, and more importantly a large class of higher-rank graphs
including all row-finite 2-graphs with no sources. These are the first general results for
irreversible dynamical systems of rank greater than 1.

We conclude the paper with a detailed analysis of the case of higher-rank graph C∗-
algebras [KP00], which were a significant motivator and source of examples for our work.
Given a row-finite higher-rank graph Λ with no sources and with infinite-path space Λ∞,
the associated groupoid GΛ is the Deaconu–Renault groupoid for the action T : Nk ↷ Λ∞

by shift maps. Our main theorem identifies the collection AΛ of subsets of Λ∞ × Tk that
are the preimages of open subsets of Prim(C∗(Λ)) with an appropriate collection DΛ of
subsets of Λ0 × Tk (Corollary 11.7), so that such subsets index the ideals of C∗(Λ). This
result is in the spirit of [CS16, Theorem 5.1]. We finish by working through two concrete
examples, completely determining the ideal structure of two 2-graph C∗-algebras that are
not accessible to any pre-existing computations of ideal structure.

The ideas and techniques we develop here are flexible, and we suspect they can be ap-
plied to significantly larger classes of groupoid C∗-algebras, particularly when combined
with the sandwiching lemma of [BCS22] as we do for the case of single local homeo-
morphisms in Section 10.4. Although we restrict our attention here to Deaconu–Renault
groupoids, the notions of essential isotropy and of harmonious families of bisections make
sense, and are potentially useful, for arbitrary étale groupoids.

Outline. We start in Section 2 by outlining necessary background and notation for
topological groupoids with examples from dynamics and graphs, the ideal structure of
separable C∗-algebras, the results of [SW16] on a parametrisation of primitive ideals in
Deaconu–Renault-groupoid C∗-algebras, and harmonic analysis on Tk. In Section 3 we
describe and analyse a family of representations of Deaconu–Renault groupoids that in-
terpolate between the regular representations and the orbit-space representations. These
are a key ingredient in the proof of our main theorem. In Section 4, we establish our
first main result (Theorem 4.2): a necessary condition for a subset of X × Tk to be the
preimage of an open subset of Prim(C∗(GT )). It follows that π : X×Tk → Prim(C∗(GT ))
is continuous (Corollary 4.4). In Section 5, we clarify how the nested open invariant sets
of our general sandwiching lemma [BCS22] relate to subsets of X ×Tk, and we show that
Deaconu–Renault groupoids admit obstruction ideals in the sense of [AL18, BCS22]. In
Section 6 we introduce and study harmonious families of bisections, which are the main
new tool we apply to study ideal structure. We identify two sufficient conditions to gen-
erate a harmonious family of bisections: one of these (Lemma 6.8) is particularly useful
in ample groupoids such as those of (higher-rank) graphs; the other (Lemma 6.6) is appli-
cable to a wider class of groupoids but requires more stringent hypotheses. In Section 7,
we prove our main result (Theorem 7.1) using harmonious families of bisections: we de-
termine the preimages in X × Tk of open subsets of Prim(C∗(GT )) for Deaconu–Renault
groupoids that admit harmonious families of bisections. We use this to describe the ideal
lattice of the C∗-algebras of such groupoids in Section 8. We characterise convergence
of sequences in Prim(C∗(GT )) in Section 9. Section 10 details a number of examples
including all actions by commuting homeomorphisms, all graph C∗-algebras, and actions
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by a local homeomorphism on a second-countable locally compact Hausdorff space. More-
over, we show that many higher-rank graphs (including all 2-graphs) admit harmonious
families of bisections. Finally, in Section 11 we use our main theorem to completely de-
scribe the ideal structure of the C∗-algebras of higher-rank graphs whose groupoids admit
harmonious families of bisections.

2. Background material

Let Z and N denote the integers and the nonnegative integers, respectively.

2.1. Isotropy in étale groupoids. We use the notation and conventions for groupoids
of [Sim20].

A groupoid is a small category in which every morphism is invertible. A groupoid G is
a Hausdorff étale groupoid if it carries a locally compact Hausdorff topology with respect
to which the range and source maps r and s are local homeomorphisms onto the unit
space G(0) = {r(α) : α ∈ G}, the inversion map α 7→ α−1 is continuous, and composition
is continuous in the subspace topology on the space G(2) of composable pairs. If G is
étale then the open subsets of G on which both r and s restrict to homeomorphisms
form a basis for the topology; we call such sets open bisections. The unit space G(0) in a
Hausdorff étale groupoid G is both closed and open in G.

The orbit [x] of a unit x ∈ G(0) is the set {r(γ) : γ ∈ G, s(γ) = x} ⊆ G(0), and the orbit
closure [x] is the closure of [x] in G(0). The restriction G|[x] = r−1

(
[x]

)
∩ s−1

(
[x]

)
is itself

a Hausdorff étale groupoid when G is. The groupoid is minimal if every orbit is dense.
Let G be an étale groupoid and take x ∈ G(0). The range fibre of x is Gx = r−1(x)

and similarly the source fibre is Gx = s−1(x); they are both discrete subsets of G. An
element γ ∈ G is isotropy at x if r(γ) = x = s(γ), and the isotropy group at x ∈ G(0)

is the discrete group I(G)x := {γ ∈ G : r(γ) = x = s(γ)} = Gx ∩ Gx. The isotropy
subgroupoid I(G) is the group bundle

⊔
x∈G(0) Ix(G). This is an algebraic subgroupoid of

G. The topological interior of the isotropy is an open subgroupoid of G denoted I◦(G).
We write I◦(G)x = I◦(G) ∩ I(G)x. The groupoid is effective if I◦(G) = G(0).

The notion of essential isotropy will be important for our main results.

Definition 2.1. Let G be an étale groupoid. The essential isotropy at x ∈ G(0) is
Iess
x (G) := I◦(G[x])x ⊆ G[x], and the essential isotropy of G is the bundle of discrete

groups
Iess(G) :=

⊔
x∈G(0)

Iess
x (G);

that is, Iess(G) is the collection of all points that are interior to the isotropy in the
restriction of G to the orbit-closure of their source.

By a normal subgroupoid of the isotropy of a groupoid G we mean a subset H ⊆ I(G)
that is closed under inversion and composition and has the property that if α ∈ H and
β ∈ Gr(α) then βαβ−1 ∈ H.

Lemma 2.2. Let G be an étale groupoid. Then I◦(G) and Iess(G) are both normal
subgroupoids of G.

Proof. If (α, β) ∈ I◦(G)∩G(2), then there are open bisections A ∋ α and B ∋ β consisting
of isotropy, and then AB is an open subset of the isotropy containing αβ, and A−1 is an
open subset of the isotropy containing α−1. So I◦(G) is closed under composition and
inversion.
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To see that it is normal, suppose γ ∈ I◦(G) and η ∈ Gr(γ). Choose a bisection U ⊆ I(G)
with γ ∈ U , and a bisection V containing η. Then V UV −1 is an open subset of I(G)
containing ηγη−1, so ηγη−1 ∈ I◦(G).

To see that Iess(G) is a normal subgroupoid, observe that if α, β ∈ Iess(G)∩G(2), and if
η ∈ Gr(α), then the units r(η), r(α), s(α) = r(β) and s(β) all have the same orbit closure
K. Since α, β ∈ I◦(G|K), the first statement of the lemma shows that αβ, α−1 and ηαη−1

all belong to I◦(G|K), and hence to Iess(G). □

Remark 2.3. The essential isotropy of a groupoid is an algebraic subgroupoid. It is in
general not an open subgroupoid as demonstrated by Example 2.7 below. We do not
know whether the essential isotropy is always closed, but we suspect not.

Notation 2.4. We define J = J (G) := Iess(G), the smallest closed subgroupoid of G
that contains the essential isotropy. For x ∈ G(0), we let Jx := J ∩ Ix. Since I is closed,
we have J ⊆ I.

2.2. Deaconu–Renault groupoids. As above, we follow the notational conventions of
[Sim20] for Deaconu–Renault groupoids.

If X is a locally compact Hausdorff space, then an action of Nk on X by local home-
omorphisms is a monoid homomorphism T : n 7→ T n from Nk to the monoid of local
homeomorphisms of X. We use the shorthand T : Nk ↷ X to mean that T is an action
of Nk on X by local homeomorphisms. The orbit of a point x under T is the set

[x]T =
⋃

n,m∈Nk

T−m(T nx),

and T is irreducible if there exists x ∈ X such that [x]T = X; we say that T is minimal
if [x]T = X for all x ∈ X. If T is clear from context, we simply write [x] for [x]T .

Suppose that X is a locally compact Hausdorff space and that T : Nk ↷ X is an action
by local homeomorphisms. We write GT for the set

{(x,m, y) ∈ X ×Zk ×X : there exist p, q ∈ Nk such that T p(x) = T q(y) and p− q = m}.
This set is a groupoid, called the Deaconu–Renault groupoid of T with composable pairs{(

(x,m, y), (y′, n, z)
)
∈ GT ×GT : y = y′

}
and multiplication map

(x,m, y)(y, n, z) = (x,m+ n, z).

The inversion operation is (x,m, y) = (y,−m,x). The unit space of GT is

G
(0)
T = {(x, 0, x) : x ∈ X},

and we silently identify it with X. With this identification the orbit [x]T of x ∈ X under
T as defined above agrees with the orbit [x] of x in GT as defined in Section 2.1.

For open sets U, V ⊆ X and elements p, q ∈ Nk, we define Z(U, p, q, V ) ⊆ GT by

Z(U, p, q, V ) := {(x, p− q, y) : x ∈ U, y ∈ V and T p(x) = T q(y)}.
The collection of all such sets is a basis for a locally compact Hausdorff topology on GT

under which it becomes an étale groupoid. If (x, p− q, y) ∈ Z(U, p, q, V ), then using that
T p and T q are local homeomorphisms, we can choose precompact open neighbourhoods U ′

of x and V ′ of y such that T p|U ′ and T q|V ′ are homeomorphisms onto their ranges. Putting
W = T p(U ′) ∩ T q(V ′) and then setting U ′′ = U ′ ∩ (T p)−1(W ) and V ′′ = V ′ ∩ (T q)−1(W ),
we obtain a basic open set Z(U ′′, p, q, V ′′) ⊆ Z(U, p − q, V ) containing (x, p − q, y) with
the property that T p|U ′′ and T q

V ′′ are homeomorphisms onto the same precompact open
subset W of X. So the collection of all such sets is a basis of precompact open bisections
for the same topology on GT .
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There is a canonical 1-cocycle cT : GT → Z (that is, a group-valued groupoid homomor-
phism) on GT given by cT (x,m, y) = m for all (x,m, y) ∈ GT . If T is clear from context,
we just write c for cT . A subset B of GT is cT -homogeneous (or simply homogeneous) if
cT (B) is a singleton subset of Zk.

Suppose that T is irreducible. Writing G for GT , Proposition 3.1 of [SW16] says that
there is an open set Y ⊆ X such that in the reduction G|Y = {γ ∈ G : r(γ), s(γ) ∈ Y }
of G to Y , the interior of the isotropy is closed. We shall need to know that in fact the
interior of the isotropy in G itself is closed.

Lemma 2.5. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X be an action by local homeomorphisms. If T is irreducible, then I◦(GT )
is closed in GT .

Proof. By [SW16, Proposition 3.10] there is an open set Y ⊆ X such that T pY ⊆ Y for
all p ∈ Nk and I◦(GT |Y ) is closed in GT |Y . Since T is irreducible and Y is open, we have
X =

⋃
p∈Nk T−p(Y ).

Suppose that (γn)∞n=1 is a sequence in I◦(GT ) that converges to γ ∈ GT . We must show
that γ ∈ I◦(GT ). It clearly belongs to I(GT ). For each n let xn = r(γn) and let r(x) = γ.
So each γn = (xn,mn, xn) and γ = (x,m, x) for some mn and m in Zk. By discarding
finitely many terms, we can assume without loss of generality that mn = m for all n.

Fix p such that r(γ) ∈ T−p(Y ). Since Y and hence T−p(Y ) is open, by discarding
finitely many terms again, we can assume that r(γn) ∈ T−p(Y ) for all n as well.

Write m = a − b with a, b ∈ Nk satisfying T a(x) = T b(x) and such that a, b ≥ p (we
can arrange this by replacing a with a + p and b with b + p for example). Choose a
neighbourhood U ⊆ T−p(Y ) of x such that T a and T b restrict to homeomorphisms of U .
Then T aU, T bU ⊆ Y because a, b ≥ p. Since Z(U, a, b, U) is an open neighbourhood of
γ = (x, p, x), we can assume without loss of generality that γn = (xn, p, xn) belongs to
Z(U, a, b, U) for all n.

Let B := {(z, p, T pz) : z ∈ U}. Then γ 7→ BγB−1 is a homeomorphism of Z(U, a, b, U)
onto BZ(U, a, b, U)B−1 ⊆ GT |Y . Hence the sequence BγnB

−1 converges in GT |Y to
BγB−1. Since each γn ∈ I◦(GT ), which is normal in GT by Lemma 2.2, each BγnB

−1 ∈
I◦(GT ) too. Since the interior of the isotropy in GT |Y is closed by [SW16, Proposi-
tion 3.10], it follows that BγB ∈ I◦((GT )|Y ). Since GT |Y ⊆ GT is open, this gives
BγB ∈ I◦(GT ). Using Lemma 2.2 again, we see that γ ∈ I◦(GT ). □

Example 2.6. (1) If GT is minimal, then the essential isotropy of GT coincides with
interior of the isotropy, and by the above result the interior of the isotropy is
closed, so J (GT ) = Iess(GT ) = I◦(GT ).

(2) If GT is strongly effective (every reduction to a closed invariant set is effective),
then the essential isotropy is trivial and J (GT ) may be identified with the unit
space X.

(3) If GT is minimal and effective, then J (GT ) = X.

2.3. Graph groupoids. We will frequently use graph groupoids to describe examples.
Let E be a row-finite directed graph with no sources (see [Rae05] for definitions and
conventions). The path space E∗ of E consists of finite strings µ = µ1 · · ·µn of edges of
E such that s(µi) = r(µi+1) for all i < n; we write r(µ) = r(µ1) and s(µ) = s(µn). The
infinite-path space E∞ of E consists of strings x = x1x2 · · · all of whose initial segments
x1 · · ·xn are paths; we write r(x) for r(x1). The space E∞ is a totally disconnected
locally compact Hausdorff space under the topology generated by the cylinder sets Z(µ) =
{µx : s(µ) = r(x)} of finite paths µ, and the shift map σ : x 7→ x2x3 . . . is a local
homeomorphism (it restricts to a homeomorphism on Z(µ) whenever µ has length at
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least 1). The resulting Deaconu–Renault groupoid GE = Gσ is called the graph groupoid
of E.

For finite paths µ, ν ∈ E∗ such that s(µ) = s(ν), both σ|µ||Z(µ) and σ|ν||Z(ν) are homeo-
morphisms onto Z(s(µ)) ⊆ G

(0)
σ

∼= E∞, and the open sets

Z(µ, ν) := Z(Z(µ), |µ|, |ν|, Z(ν)) = {(µx, |µ| − |ν|, νx) : x ∈ Z(s(µ))}

in Gσ indexed by such pairs constitute a basis of compact open sets for Gσ.
We will refer to the following elementary but illustrative example a number of times

throughout the paper.

Example 2.7 (The Dumbbell graph). Consider the directed graph E depicted below.

v w
f

e g

We call this the dumbbell graph. The infinite-path space of E is

E∞ = {e∞} ∪ {enfg∞ : n ∈ N} ∪ {g∞}.

A straightforward argument shows that in the topology on E∞ the subset {enfg∞ :
n ∈ N} ∪ {g∞} is a discrete open subset, and E∞ is homeomorphic to the one-point
compactification of this subset with e∞ as the point at infinity. The Deaconu–Renault
groupoid is

GE = {(e∞, n, e∞) : n ∈ Z} ∪ {(αg∞, |α| − |β|, βg∞) : α, β ∈ {enf : n ∈ N}}
∪ {(g∞, n, g∞) : n ∈ Z}.

An important point is that the topology of cylinder sets is finer than the topology
inherited from E∞ × Z × E∞. To see this, note that although (enfg∞, 0, enfg∞) →
(e∞, 0, e∞) as n→ ∞, for m ∈ Z \ {0} the sequence (enfg∞,m, enfg∞)n∈N belongs to Gσ

but has no convergent subsequence, and in particular does not converge to (e∞,m, e∞). To
see this note that for any p, q with p− q = m, when n ≥ max{p, q} we have σp(enfg∞) =
en−pfg∞ ̸= en−qfg∞ = σq(enfg∞), and so (enfg∞,m, enfg∞) does not belong to the open
neighbourhood Z(ep, eq) of (e∞,m, e∞).

We claim that Iess
Gσ

= I(Gσ) = {(x,m, x) : x ∈ E∞,m ∈ Z}. Clearly Iess
Gσ

⊆ {(x,m, x) :
x ∈ E∞,m ∈ Z}. Since E∞ \ {e∞} is an open discrete subset of E∞, the set {(x,m, x) :
x ∈ E∞ \ {e∞},m ∈ Z} is an open discrete subset of Gσ and hence contained in Iess

Gσ
. So

it suffices to show that {(e∞,m, e∞) : m ∈ Z} ⊆ Iess
Gσ

. For this, note that the orbit of e∞

is the singleton {e∞}, so [e∞] = {e∞}, and (Gσ)|[x] = {(e∞,m, e∞) : m ∈ Z} is a discrete
group isomorphic to Z. In particular, the interior of the isotropy in this groupoid is the
whole groupoid, and we obtain {(e∞,m, e∞) : m ∈ Z} ⊆ Iess

Gσ
as claimed.

Since, as discussed above, (em+nfg∞,m, enfg∞)n≥|m|, the space Iess
Gσ

is not open.
It is instructive to describe the relative topology on Iess

Gσ
. The complement Iess

Gσ
\E∞ of

the unit space is a discrete clopen subset, while the unit space is homeomorphic to the
one-point compactification of {enfg∞ : n ∈ N} ∪ {g∞} as described above.

We find it helpful to picture Iess
Gσ

as a subset of R3 as follows: for x ∈ E∞, we let
θ(x) := 1/min{n : xn = g} with the convention that θ(e∞) = 0; we then define points in
Iess
Gσ

with points in R3 by

(x,m, x) 7→

{
(θ(x),m, 0) if x ̸= e∞

(θ(x), 0,m) if x = e∞.
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Example 2.8 (Essential isotropy of graph groupoids). For a general graph groupoid,
we can describe the essential isotropy relatively cleanly. It suffices to discuss row-finite
graphs with no sources, because up to groupoid equivalence all graph groupoids can be
realised by such graphs. Let E be a row-finite with no sources (in particular, the unit
space of the graph groupoid is identified with the infinite-path space). A maximal tail of
E is a set T ⊆ E0 of vertices with the property that:

(1) s(α) ∈ T implies r(α) ∈ T ;
(2) if v ∈ T then there exists e ∈ vE1 such that s(e) ∈ T ; and
(3) T is cofinal in the sense that whenever u, v ∈ T there exists w ∈ T such that uE∗w

and vE∗w are both nonempty.
The orbit closures in E∞ are the sets VT := {x ∈ E∞ : s(xi) ∈ T for all i} indexed by
maximal tails T of E: if x is an infinite path, then Tx :=

⋃
n{v ∈ E0 : vE∗s(xn) ̸= ∅}

is a maximal tail, and [x] = VTx . By [HS04, Lemma 2.1], if T is a maximal tail, then T
can contain (up to cyclic permutation of edges and vertices) at most one cycle µ with no
entrance in T ; if there is such a µ, then T = Tµ∞ = {v ∈ E0 : vE∗r(µ) ̸= ∅}. It is routine
to check using the arguments of Example 2.7 that for a maximal tail T , the interior of the
isotropy in GET := G|VT

is trivial if T contains no cycle with an entrance, and is equal to

{(αµ∞, n|µ|, αµ∞) : α ∈ E∗r(µ), α ̸∈ E∗µ, n ∈ Z}
if T = Tµ∞ is a maximal tail containing a cycle µ with no entrance in T . It follows that

Iess(GE) = G
(0)
E ∪ {(αµ∞, n|µ|, αµ∞) : r(µ) = s(µ), µ has no entrance in Tµ∞ ,

α ∈ E∗r(µ), α ̸∈ E∗µ, n ∈ Z}.

To describe the topology on Iess, first note that G(0)
E is a clopen subset of Iess. We claim

that the complement of G(0)
E in Iess is discrete. For this, fix a cycle µ of nonzero length

with no entrance in T = Tµ, a path α with s(α) = r(µ) and an integer n. We must show
that given any sequence νi of cycles each having no entrance in Tν∞i , any sequence βi of
paths with s(βi) = r(νi) and βi ̸∈ E∗νi, and any sequence pi ∈ Z, if (βiν∞i , pi|βi|, βiν∞i ) →
(αµ∞, n|µ|, αµ∞)}, then (βiν

∞
i , pi|βi|, βiν∞i ) = (αµ∞, n|µ|, αµ∞) for large i. We will argue

the case when n > 0; the case n < 0 follows by taking inverses. Observe that since
the range and source maps and the cocycle c : (z,m, y) 7→ m are continuous, we have
βiν

∞
i → αµ∞ and pi|νi| = n|µ| for large i; we may as well assume that pi|νi| = n|µ| for

all i. Fix I such that (βiν
∞
i , pi|βi|, βiν∞i ) ∈ Z(αµ2n, n|µ|, αµn) for i ≥ I. Fix i ≥ I. We

claim that βiν∞i ∈ Z(αµ(2+k)n) for all k ≥ 0. We prove this by induction. The base
case is trivial since (βiν

∞
i , pi|βi|, βiν∞i ) ∈ Z(αµ2n, n|µ|, αµn) implies βiν∞i ∈ Z(αµ2n). So

suppose inductively that βiν∞i ∈ Z(αµ(2+k)n). Then βiν
∞
i = αµ(2+k)ny for some y. Since

(βiν
∞
i , pi|βi|, βiν∞i ) ∈ Z(αµ2n, n|µ|, αµn), we have

σ|α|+2n|µ|(βiν
∞
i ) = σ|α|+n|µ|(βiν

∞
i ) = σ|α|+n|µ|(αµ(2+k)ny) = µ(1+k)ny.

Since βiν∞i ∈ Z(αµ2n) by the base case,

βiν
∞
i = αµ2nσ|α|+2n|µ|(βiν

∞
i ) = αµ2nµ(1+k)ny ∈ Z(αµ(2+(k+1))n).

So βiν∞i ∈ Z(αµ(2+k)n) for all k ≥ 0 by induction, and hence βiν∞i = αµ∞.

2.4. Ideals in C∗-algebras. Here we use the exposition from [RW98, Appendix A2] to
which the reader is also referred for details.

Let A be a C∗-algebra. By an ideal in A, we will always mean a closed and two-sided
ideal. The ideals in A are therefore exactly the kernels of ∗-homomorphisms defined on
A. An ideal I in A is primitive if it is the kernel of an irreducible representation of A,
and the collection of primitive ideals, PrimA, is endowed with the hull-kernel topology
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(or Jacobson topology) which is specified by the closure operation: the closure of a subset
F ⊆ PrimA is given by

F̄ = {P ∈ PrimA :
⋂
I∈F

I ⊆ P}.

Let I be an ideal in A. The hull of I is the closed set of primitive ideals

h(I) = {P ∈ PrimA : I ⊆ P}.
Conversely, if F is a closed set of primitive ideals, then the kernel of F is

k(F ) =
⋂
J∈F

J.

The two operations are inverses of each other and therefore define a bijection between the
ideals in A and the closed subset of PrimA. Similarly, ideals in A correspond bijectively
to open sets of primitive ideals as in I 7→ {P : I ̸⊆ P}.

2.5. Primitive ideals in C∗-algebras of Deaconu–Renault groupoids. Recall that
if G is an étale groupoid then C∗(G) is the universal C∗-algebra generated by a ∗-
representation of the convolution algebra Cc(G) (see, for example, [Sim20]). Since G(0) is
a clopen subset of G, the completion of Cc(G

(0)) in C∗(G) is a subalgebra isomorphic to
C0(G

(0)). We identify the two and regard C0(G
(0)) as a subset of C∗(G).

If G = GT is the Deaconu–Renault groupoid for an action T : Nk ↷ X, then for z ∈ T
and for each f ∈ Cc(GT ) the function γz(f) : (x, n, y) 7→ znf(x, n, y) also belongs to
Cc(GT ). The map γz is a ∗-homomorphism, so the universal property of C∗(GT ) implies
that γz extends to an endomorphism of C∗(GT ). A routine ε/3-argument shows that
z 7→ γz(a) is continuous for a ∈ C∗(G). Since γz ◦ γw = γzw on Cc(GT ) and since γ1 is the
identity on Cc(GT ), this γ is an action of Tk on C∗(GT ) called the gauge action.

Let GT be the Deaconu–Renault groupoid of an action T : Nk ↷ X. For each (x, z) ∈
X × Tk, there is an irreducible representation πx,z : C∗(GT ) → B(ℓ2([x])) such that

πx,z(f)ey =
∑

γ∈(GT )y

zc(γ)f(γ)er(γ)

for every f ∈ Cc(GT ) and y ∈ [x]. By [SW16, Theorem 3.2], there is a surjection
π : X × Tk → Prim(C∗(GT )) such that π(x, z) = ker(πx,z) for all (x, z) ∈ X × Tk.
Moreover, πx,z and πx′,z′ have the same kernel precisely if [x] = [x′] and z and z′ induce
the same character on the group

H(x) :=
⋃

∅̸=U⊆[x]
U relatively open

{m− n : Tmy = T ny for all y ∈ U} ⊆ Zk

described immediately before [SW16, Theorem 3.2]. Observe that H(x) = H(y) whenever
[x] = [y].

We claim that H(x) = c(I◦((GT )|[x])): the containment ⊇ follows from the definition
of H(x), and the reverse containment follows from [SW16, Lemma 3.9] since (GT )|[x] is
irreducible by definition. We claim further that

H(x) = c(Iess
x ).

Indeed, if n ∈ H(x), then there exists γ ∈ I◦((GT )|[x]) with c(γ) = n. So there is an open
bisection B in I◦((GT )|[x]) containing γ, and since c is locally constant, we can assume that
B ⊆ c−1(n). Since [x] is dense in [x], there exists η ∈ (GT )x with r(η) ∈ s(B). Lemma 2.2
shows that η−1γη ∈ I◦((GT )|[x])x, and so n ∈ c(Iess

x ). The reverse containment is clear
because Iess

x ⊆ I◦((GT )|[x]).
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2.6. Harmonic analysis. For the proof of our main result we will need a bit of harmonic
analysis. We use notation and results from [Fol99, Chapter 8].

Let K ⊆ Zk be a subgroup. Its annihilator is the compact subgroup K⊥ := {z ∈
Tk : zh = 1, for all h ∈ K} ≤ Tk. The annihilator acts on Tk by translation. The
Pontryagin dual of K (defined as the group of continuous homomorphisms from H into
T) is isomorphic to the quotient group Tk/K⊥ ∼= K̂. Let ψ ∈ C∞(K̂). The Fourier
coefficients of ψ are

ψ̂(h) :=

∫
K̂

ψ(η)η(h) dη,

where the integration is with respect to normalised Haar measure on K̂. When ψ is
smooth (that is, all partial derivatives exist and are continuous), its Fourier coefficients
are absolutely summable, cf. [Fol99, p. 257].

Given h0 ∈ K, we may perturb ψ by h0 to obtain ψh0 ∈ C∞(K̂) given by
ψh0(η) = η(h0)ψ(η) (2.1)

for η ∈ K̂. The Fourier coefficients of ψh0 are ψ̂h0(h) = ψ̂(h − h0), for h ∈ K. If ψ is
supported on an open subset V ⊆ K̂, then ψh0 is also supported on V .

If H ≤ K is a subgroup, then K⊥ ⊆ H⊥, and there is a canonical quotient map
q̂H,K : K̂ → Ĥ. We define an averaging map ΦH,K : C(K̂) → C(Ĥ) by

ΦH,K(ψ)(q̂H,K(η)) :=

∫
H⊥

ψ(χη) dχ (2.2)

for ψ ∈ C(K̂) and η ∈ K̂. Again we integrate with respect to normalised Haar measure
on H⊥. If ψ ∈ C(K̂) is smooth, then it is the ∥ · ∥∞-limit of its Fourier series:

ψ(η) =
∑
h∈K

η(h)ψ̂(h).

In this case,

ΦH,K(ψ)(qH,K(η)) =
∑
h∈K

η(h)ψ̂(h)

∫
H⊥

χ(h) dχ =
∑
h∈H

η(h)ψ̂(h). (2.3)

In particular,
(
ΦH,K(ψ)̂

)
(h) = ψ̂(h) for all h ∈ H.

If ψ ∈ C(K̂) is supported on V̂ ⊆ K̂, then ΦH,K(ψ) is supported on q̂H,K(V̂ ).

Lemma 2.9. Suppose that z ∈ Tk and ψ ∈ C∞(Tk) satisfy ψ(z) ̸= 0. For h0 ∈ Zk let
ψh0 be as in (2.1). For any subgroup H ⊆ Zk there exists h0 ∈ Zk such that∑

h∈H

zhψ̂h0(h) ̸= 0.

Proof. Since ψ is smooth, it is the norm limit of its Fourier series, so

0 ̸= ψ(z) =
∑
h∈Zk

zhψ̂(h).

Choose a section σ for the quotient map Zk → Zk/H. For each y ∈ Zk/H, consider the
σ(y)-pertubation of ψ,

ψσ(y)(η) = η(σ(y))ψ(η). (2.4)

As discussed above, for h ∈ Zk the corresponding Fourier coefficient of ψσ(y) is ψ̂σ(y)(h) =

ψ̂
(
h− σ(y)

)
. We have

ΦH,Zk(ψσ(y))
(
q̂(χ)

)
=

∑
h∈H

zhψ̂
(
h− σ(y)

)
. (2.5)
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Let q : Tk → Ĥ be the quotient map so that q(z)(h) = zh for h ∈ H and z ∈ Tk. Since the
Fourier coefficients of ψ are absolutely summable, we can rearrange the summation (2.5)
to see that

0 ̸=
∑
h∈Zk

zhψ̂(h) =
∑

y∈Zk/H

(∑
h∈H

zhψ̂
(
h− σ(y)

))
=

∑
y∈Zk/H

ΦH,Zk(ψσ(y))(q(z)).

In particular, there exists y ∈ Zk/H such that h0 = σ(y) satisfies

0 ̸= ΦH,Zk(ψh0)(z) =
∑
h∈Zk

zhψ̂(h). □

3. A family of representations

Our analysis of ideals depends upon the existence and behaviour of representations
of the C∗-algebra of a Deaconu–Renault groupoid that interpolate between the regular
representation on ℓ2((GT )x) and the representation on ℓ2([x]) induced by the action of GT

on [x]. We establish these technical results in this section.
Let X be a second-countable locally compact Hausdorff space and let T : Nk ↷ X be

an action by local homeomorphisms. Suppose that H is a subgroup of Zk. We let ∼H be
the equivalence relation on GT given by

(x1, h1, y1) ∼H (x2, h2, y2) ⇐⇒ x1 = x2, y1 = y2, and h1 − h2 ∈ H.

This is an equivalence relation, and for ξ ∈ GT , we let [ξ]H denote the equivalence class
of ξ with respect to ∼H .

Proposition 3.1. Let X be a second-countable locally compact Hausdorff space and sup-
pose that T : Nk ↷ X is an action by local homeomorphisms. For each (x, z) ∈ X×T there
is a representation πH

(x,z) : C
∗(GT ) → B(ℓ2((GT )x/∼H)) such that for each f ∈ Cc(GT )

and ξ1, ξ2 ∈ (GT )x,

⟨e[ξ1]H , πH
(x,z)(f)e[ξ2]H ⟩ =

∑
(x1,h,x2)∈[ξ1ξ−1

2 ]H

zhf(x1, h, x2). (3.1)

If H1 and H2 are subgroups of Zk and H1 ⊆ H2, then ker(πH1

(x,z)) ⊆ ker(πH2

(x,z)).

Proof. The canonical cocycle cT : GT → Zk defined by cT ((y, n, x)) = n for every (y, n, x) ∈
GT determines a coaction (dual to the gauge action) δT : C∗(GT ) → C∗(GT ) ⊗ C∗(Zk)
that satisfies δT (f) = f ⊗ un whenever f ∈ Cc(c

−1
T (n)) ⊆ Cc(GT ).

Fix x ∈ X and consider the representation εx : C
∗(GT ) → B(ℓ2([x])) of [BCFS14,

Proposition 5.2] satisfying εx(f)ey =
∑

γ∈(GT )y
f(γ)er(γ) for all f ∈ Cc(GT ) and y ∈ [x].

Fix a subgroup H ≤ Zk and z ∈ Tk. Let {un : n ∈ Zk} ⊆ C∗(Zk) be the canonical
generators. Similarly, let {un+H : n+H ∈ Zk/H} ⊆ C∗(Zk/H) be the canonical genera-
tors. Since n+H 7→ znun+H is a unitary representation of Zk, there is a homomorphism
ρz,H : C∗(Zk) → C∗(Zk/H) such that ρz,H(un) = znun+H . Finally, let λZk/H be the left
regular representation of C∗(Zk/H) on ℓ2(Zk/H).

Consider the representation

ψH
(x,z) := (1⊗ λZ

k/H) ◦ (εx ⊗ ρz,H) ◦ δT : C∗(GT ) → B
(
ℓ2([x])⊗ ℓ2(Zk/H)

)
. (3.2)

Observe that c(I(GT )x) is a subgroup of Zk, so c(I(GT )x) +H is also a subgroup. Let
Σ ⊆ Zk be a complete set of coset representatives for the cosets of c(I(GT )x) +H in Zk

such that 0 ∈ Σ is the representative of the coset c(I(GT )x) +H itself.
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Our strategy is as follows. We decompose ℓ2([x]) ⊗ ℓ2(Zk/H) into a direct sum of
subspaces Ht, indexed by elements t in Σ, that are invariant for ψH

(x,z). We then identify
a unitary isomorphism Wj : ℓ

2((GT )x/∼H) → H0 such that πH
(x,z) := Ad(W ∗

j ) ◦ ψH
(x,z)|H0

satisfies (3.1), establishing the first statement. We then show that the restrictions ψH
(x,z)|Ht

are all unitarily equivalent to one another, and conclude that ker(πH
(x,z)) = ker(ψH

(x,z)).
Finally we will show that if H1 ≤ H2 ≤ Zk, then ker(ψH1

(x,z)) ⊆ ker(ψH2

(x,z)), giving the final
statement.

We first claim that

[x]× Zk/H =
⊔
t∈Σ

{(y, n+ t+H) : (y, n, x) ∈ GT}. (3.3)

It is clear that the left-hand side contains the union of the sets on the right, so we have
to show that the union on the right contains the left-hand side, and that the sets on the
right are disjoint. For the first assertion, fix y ∈ [x] and n ∈ Zk so that (y, n + H) is a
typical element of [x]×Zk/H. Since y ∈ [x] there exists ny such that (y, ny, x) ∈ GT . Let
t ∈ Σ be the unique element such that t ∈ n−ny +H+ c(I(GT )x). So n = ny + t+h+m
for some h ∈ H and m ∈ c(I(GT )x). Since m ∈ c(I(GT )x) we have (x,m, x) ∈ GT , and
so (y, ny +m,x) = (y, ny, x)(x,m, x) ∈ GT . We then have (y, n+H) = (y, n− h+H) =
(y, (ny+m)+t+H), which belongs to the right-hand side of (3.3). We must now show that
{(y, n+t+H) : (y, n, x) ∈ GT}t∈Σ are mutually disjoint. So suppose that s, t ∈ Σ and that
(y, n+ t+H) = (y, n′ + s+H) for some (y, n, x), (y, n′, x) ∈ GT . So s− t ∈ n− n′ +H.
We have (x, n − n′, x) = (x, n, y)(x, n′, y)−1 ∈ GT so that n − n′ ∈ c(I(GT )x). Hence
s− t ∈ c(I(GT )x)+H. Therefore, s ∈ Σ∩ (t+c(I(GT )x)+H) = {t}, so s = t as required.

For t ∈ Σ, we define

Ht := span{ey ⊗ en+t+H : (y, n, x) ∈ GT}.

Then (3.3) shows that ℓ2([x])⊗ ℓ2(Zk/H) ∼=
⊕

t∈ΣHt. To show that each Ht is invariant
for ψH

(x,z), we fix t ∈ Σ. Since C∗(GT ) is the closed linear span of functions supported on
basic open sets, it suffices to fix open sets U, V ⊆ X and p, q ∈ Nk such that T p|U and T q|V
are homeomorphisms onto the same open set W ⊆ X, a function f ∈ Cc(Z(U, p, q, V ))
and an element (y, n, x) ∈ GT so that ey ⊗ en+t+H is a typical basis element of Ht, and
show that ψH

(x,z)(f)(ey ⊗ en+t+H) ∈ Ht. This is a straightforward calculation:

ψH
(x,z)(f)(ey ⊗ en+t+H) = (1⊗ λZ

k/H) ◦ (εx(f)⊗ zp−qup−q+H)(ey ⊗ en+t+H)

=
∑

γ∈(GT )y

zp−qf(γ)(er(γ) ⊗ en+p−q+t+H).

If y ̸∈ V , then f(γ) = 0 for all γ ∈ (GT )y, and then ψH
(x,z)(f)(ey ⊗ en+t+H) = 0. If y ∈ V ,

then there is a unique u ∈ U such that T p(u) = T q(y), and then γ = (u, p − q, y) is the
unique element of (GT )y such that f(γ) ̸= 0, so the calculation above gives

ψH
(x,z)(f)(ey ⊗ en+t+H) = zp−qf(u, p− q, y)(eu ⊗ en+p−q+t+H). (3.4)

Since (u, n+ p− q, x) = (u, p− q, y)(y, n, x) ∈ GT , we have eu ⊗ en+p−q+t+H ∈ Ht, so Ht

is invariant for ψH
(x,z) as claimed.

In particular, the subspace H0 = span{ey⊗en+H : (y, n, x) ∈ GT} is invariant for ψH
(x,z).

We show that H0 is isomorphic to ℓ2((GT )x/∼H). To see this, observe that there is a
map j̃ : (GT )x → [x] × Zk/H satisfying j̃(y, n, x) = (y, n +H), and we have (y, n, x) ∼H

(y′, n′, x) if and only if y = y′ and n − n′ ∈ H, and hence if and only if j̃(y, n, x) =
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j̃(y′, n′, x). This means that there is an injective map j : (GT )x/∼H → [x]× Zk/H satis-
fying j([y, n, x]) = (y, n+H). Since j induces a bijection e[y,n,x] 7→ ey ⊗ en+H between or-
thonormal bases for ℓ2((GT )x/∼H) and H0, it induces a unitary Wj : ℓ

2((GT )x/∼H) → H0.
Since H0 is invariant for ψH

(x,z) we obtain a representation

πH
(x,z) := Ad(W ∗

j ) ◦ ψH
(x,z) : C

∗(GT ) → B(ℓ2((GT )x/∼H)).

We claim that this representation satisfies (3.1). Once again it suffices to establish (3.1)
for f ∈ Cc(Z(U, p − q, V )) where T p|U and T q|V are homeomorphisms onto the same
open set W . Fix [ξ1] = [w,m, x] and [ξ2] = [y, n, x] in (GT )x/∼H . As in the paragraph
including (3.4), we have

⟨e[ξ1]H , πH
(x,z)(f)e[ξ2]H ⟩ =


zp−qf(w, p− q, y) if y ∈ V , w ∈ U , T p(z) = T q(y),

and n+ p− q +H = m+H,
0 otherwise.

Note that [ξ1ξ−1
2 ] = {(w,m−n+h, y) : h ∈ H}∩GT and that f is nonzero at at most one

point in this set, which occurs if y ∈ V , w ∈ U , T p(w) = T q(y) and m− n ∈ p− q +H.
So

∑
(x1,h,x2)∈[ξ1ξ−1

2 ]H

zhf(x1, h, x2) =


zp−qf(w, p− q, y) if y ∈ V , w ∈ U , T p(z) = T q(y),

and p− q +H = m− n+H,
0 otherwise.

Comparing the last two displayed equations we see that πH
(x,z) satisfies (3.1) as claimed.

This completes the proof of the first statement.
Next we claim that ker(πH

(x,z)) = ker(ψH
(x,z)) = ker((εx ⊗ ρz,H) ◦ δT ). First note that

for each t ∈ Σ the map ey ⊗ en+t+H 7→ ey ⊗ en+H is a bijection between orthonormal
bases for Ht and H0 and so induces a unitary Vt : Ht → H0. The definition of Vt and the
paragraph including (3.4) show that Ut commutes with ψH

(x,z)(f) for f ∈ Cc(Z(U, p, q, V ).
Hence Ad(Vt) ◦ ψH

(x,z)|H0 = ψH
(x,z)|Ht . It follows that

ψH
(x,z) =

⊕
t∈Σ

Ad(Vt) ◦ ψH
(x,z)|H0 =

⊕
t∈Σ

Ad(VtWj) ◦ πH
(x,z),

so ker(πH
(x,z)) = ker(ψH

(x,z)). Since Zk/H is amenable, the regular representation λZ
k/H

is faithful, and C∗(Zk/H) is nuclear so 1 ⊗ λZ
k/H is faithful on B(ℓ2([x])) ⊗ C∗(Zk/H).

Therefore, ker(ψH
(x,z)) = ker((εx ⊗ ρz,H) ◦ δT ).

It remains to verify that ifH1 ≤ H2 ≤ Zk are subgroups then ker(πH1

(x,z)) ⊆ ker(πH2(x, z))

for all (x, z) ∈ X × Tk. From the above observations, we just need to show that

ker(εx ⊗ ρz,H1) ⊆ ker(εx ⊗ ρz,H2). (3.5)

The quotient map n + H1 7→ n + H2 from Zk/H1 to Zk/H2 induces a homomorphism
q : C∗(Zk/H1) → C∗(Zk/H2) satisfying ρ(z,H2) = q◦ρ(z,H1). Therefore (1⊗q)◦(εx⊗ρz,H1) =
εx ⊗ (q ◦ ρz,H1) = εx ⊗ ρz,H2 , and this proves (3.5). □

Remark 3.2. When H = Zk, the equivalence relation ∼Zk is given by (x,m, y) ∼Zk

(w, n, z) if and only if x = w, y = z and m − n ∈ Zk; that is, if and only if x =
w and y = z. Hence there is a bijection (GT )x/∼Zk → [x] given by [y, n, x] 7→ y.
Using this bijection to induce a unitary ℓ2((GT )x/∼Zk) → ℓ2([x]), we see that πZk

(x,z) is
unitarily equivalent to the representation πx,z of C∗(GT ) on ℓ2([x]) appearing in [SW16,
Theorem 3.2] (cf. Section 2.5).
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It will be important later that the nesting of kernels described in the final statement of
Proposition 3.1 is equality if H1 is the image under cT of the essential isotropy at x, and
H2 is the whole of Zk.

Lemma 3.3. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Let cT : GT → Zk be the canonical
cocycle. Fix (x, z) ∈ X × Tk, and let K := cT (Iess

x ). Then ker(πK
(x,z)) = ker(π(x,z)).

Proof. Let Y := [x] ⊆ X, the orbit-closure of x. Then Y is a closed invariant subset of X
for T , so T restricts to an action S : Nk ↷ Y . The resulting Deaconu–Renault groupoid
GS is precisely the reduction of (GT ) to the closed invariant subspace Y of its unit space.
Let qY : C∗(GT ) → C∗(GS) be the surjective homomorphism extending restriction of
functions Cc(GT ) → Cc(GS) [Sim20, Proposition 10.3.2].

By definition, πK
(x,z) and π(x,z) annihilate ker(qY ). Consequently, πK

(x,z) and π(x,z) factor
through the corresponding representations π̃K

(x,z) and π̃(x,z) of C∗(GS) respectively. So it
suffices to show that ker(π̃K

(x,z)) = ker(π̃(x,z)).
Since G(0)

S = Y = [x], the groupoid GS is irreducible. Hence Lemma 2.5 implies that
I◦(GS) is closed in GS, and so [SW16, Proposition 2.5] implies that G′ := GS/I◦(GS) is
an amenable effective locally compact Hausdorff étale groupoid. By definition, I◦(GS) =

Iess(GT )x = {(y, h, y) : y ∈ [x] and h ∈ K}. In particular, the set G′
x is equal to

(GS)x/∼K , and the orbit [x]G′ is equal to the orbit [x]GS
. So we can identify ℓ2(G′

x)
with ℓ2((GS)x/∼K) and ℓ2([x]G′) with ℓ2([x]GS

). Consequently, we can regard the regular
representation πG′

x of C∗(G′) for x ∈ (G′)(0) as a representation on ℓ2((GS)x/∼K), and
the representation εx : C∗(G′) → ℓ2([x]G′) such that εx(f)(δy) =

∑
α∈G′

y
f(α)δr(α) (see

[BCFS14, Proposition 5.2]) as a representation on ℓ2([x]GS
).

Proposition 2.6 of [SW16] shows that there is a homomorphism κ : C∗(GS) → C∗(G′)
such that κ(f)([γ]) =

∑
η∈[γ] f(η) for all f ∈ Cc(GS). Let γz ∈ Aut(C∗(GS)) be the

automorphism such that γz(f)(u, n, v) = znf(u, n, v) for f ∈ Cc(GS) as in Section 2.5.
Direct calculation shows that, with the identifications of Hilbert spaces in the preceding
paragraph, π̃K

(x,z) = πG′
x ◦ κ ◦ γz and π̃(x,z) = εx ◦ κ ◦ γz. Since [x] = (G′)(0), both πG′

x and
εx are injective on C0((G

′)(0)). Hence [Sim20, Theorem 10.2.7] shows that they are both
injective. Consequently, ker(π̃K) = ker(κ ◦ γz) = ker(π̃(x,z)) as required. □

The following technical lemma will be helpful in identifying elements in the kernels of
the representations πH

(x,z).

Lemma 3.4. Let H be a subgroup of Zk, fix (x, z) ∈ X×T, and let πH
(x,z) be the represen-

tation of Proposition 3.1. For f ∈ C∗(GT ), we have πH
(x,z)(f) = 0 if and only if for every

pair of homogeneous bisections B1, B2 ⊆ GT and every pair of functions hi ∈ Cc(Bi),
we have ⟨e[(x,0,x)]H , πH

(x,z)(h1fh2)e[(x,0,x)]H ⟩ = 0. In particular, an ideal I is contained in
ker(πH

(x,z)) if and only if

⟨e[(x,0,x)]H , πH
(x,z)(f)e[(x,0,x)]H ⟩ = 0,

for all f ∈ I.

Proof. If πH
(x,z)(f) = 0, then each πH

(x,z)(h1fh2) = 0, so the “only if” implication is imme-
diate. We just need to prove the “if” implication.

Fix f ∈ Cc(GT ) and suppose that for every pair of homogeneous bisections B1, B2 ⊆ GT

and every pair of functions hi ∈ Cc(Bi), we have ⟨e[(x,0,x)]H , πH
(x,z)(h1fh2)e[(x,0,x)]H ⟩ = 0. It
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suffices to show that for all ξ1 = (y1, n1, x) and ξ2 = (y2, n2, x) in (GT )x, we have

⟨e[ξ1]H , πH
(x,z)(f)e[ξ2]H ⟩ = 0.

By definition of the topology on GT there are open bisections B1 ⊆ c−1
T (−n1) and B2 ⊆

c−1
T (n2) such that ξ−1

1 ∈ B1 and ξ2 ∈ B2, and by Urysohn’s lemma we can find hi ∈ Cc(Bi)
such that h1(ξ−1

1 ) = 1 = h2(ξ2).
Let η ∈ (GT )x. Since h1 is supported on a bisection containing ξ1, the formula (3.1)

implies that

⟨e[η]H , πH
(x,z)(h1)e[ξ1]H ⟩ =

∑
(u,p,y1)∈[ηξ−1

1 ]H

zph1(u, p, y1) = z−n1h1(ξ
−1
1 ) = z−n1 .

We deduce that πH
(x,z)(h1)e[ξ1]H = z−n1e[η]H where [η]H = [(x, 0, x)]H and therefore that

πH
(x,z)(h1)

∗e[(x,0,x)]H = zn1e[ξ1]H . A similar calculation shows that πH
(x,z)(h2)e[(x,0,x)]H =

zn2e[ξ2]H . Hence

0 = ⟨e[(x,0,x)]H , πH
(x,z)(h1fh2)e[(x,0,x)]H ⟩ = zn2−n1⟨e[ξ1]H , πH

(x,z)(f)e[ξ]H ⟩,

and this shows that πH
(x,z)(f) = 0.

For the final statement, the “only if” implication is trivial. For the “if” direction, fix
f ∈ I. Then for any pair of homogeneous bisections B1, B2 ⊆ GT and any pair of
functions hi ∈ Cc(Bi), we have h1fh2 ∈ I, and so ⟨e[(x,0,x)]H , πH

(x,z)(h1fh2)e[(x,0,x)]H ⟩ = 0 by
hypothesis. Hence πH

(x,z)(f) = 0 by the first statement. □

We shall need to know that averaging over subgroups of H preserves the kernel of πH
(x,z).

Lemma 3.5. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Fix nested subgroups H ≤ K of
Zk and a point (x, z) ∈ X × Tk. Let EK be the conditional expectation on C∗(GT ) given
by

EK(f)(x, n, y) =

∫
K⊥

wnf(x, n, y) dw,

for all f ∈ Cc(GT ) and (x, n, y) ∈ GT . Then EK

(
ker(πH

(x,z))
)
⊆ ker(πH

(x,z)).

Proof. Let α : K⊥ → Aut(C∗(GT )) be the action given by αw(f)(x, n, y) = wnf(x, n, y),
for all f ∈ Cc(GT ) and (x, n, y) ∈ GT . Then EK(f) =

∫
K⊥ αw(f) dw. Fix basis vectors

e[(u,m,x)]H , e([v,n,x)]H of ℓ2((GT )x/∼H). For any f ∈ ker(πH
(x,z)), we calculate, using [RW98,

Lemma C.2] at the first equality, and that H ≤ K⊥ at the last equality:

⟨e[(u,m,x)]H , π
H
(x,z)(EK(f))e[(v,n,x)]H ⟩ =

∫
K⊥

∑
h∈H

zh+m−nwh+m−nf(u, h+m− n, v) dw

=

∫
K⊥

wm−n
∑
h∈H

zh+m−nf(u, h+m− n, v) dw

=

∫
K⊥

wm−n⟨e[(u,m,x)]H , π
H
(x,z)(f)e[(v,n,x)]H ⟩ dw

= 0.

Therefore, πH
(x,z)(EK(f)) = 0 and the claim follows. □
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4. The map π is continuous

We show in this section that the map from X × Zk to the primitive-ideal space of
the C∗-algebra of a Deaconu–Renault groupoid determined by the irreducible representa-
tions πZk

(x,z) from the preceding section is continuous. We will use the following notation
throughout the remainder of the paper.

Notation 4.1. LetX be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. For each x ∈ X and z ∈ Tk, we
write

π(x,z) := πZk

(x,z) : C
∗(GT ) → B(ℓ2((GT )x/∼Zk)) (4.1)

for the representation obtained from Proposition 3.1 applied with H = Zk. By [SW16,
Theorem 3.2] and Remark 3.2, the map

π : X × Tk → Prim(C∗(GT )) (4.2)

defined by π(x, z) := ker(π(x,z)) is a surjection.

With the notation above, we have ker(π(x,z)) = ker(π(x′,z′)) if and only if [x] = [x′] and
z and z′ determine the same character of c(Iess

x ) = c(Iess
x′ ).

Suppose that B = {Bi : i ∈ I} is a family of bisections of GT . We write Bess for the
intersection

Bess :=
(⋃

B
)
∩ Iess =

(⋃
i∈I Bi

)
∩ Iess.

This is an algebraic bundle of subsets of Zk (its fibres are not necessarily groups, and
it need not be particularly well behaved topologically; for example, it is unlikely to be
locally compact). For x ∈ X, we write Bess

x for the fibre Bess ∩ Gx of this bundle over x.
We then write

(Bess)⊥ = {(x, z) ∈ (s(Bess)× Tk) : zc(γ) = 1 for all γ ∈ Bess
x }.

Algebraically, this is a bundle over s(Bess) of subgroups of Tk, though it need not be
topologically well-behaved. We think of it as the bundle of annihilators of the fibres of
Bess.

Given a subset W ⊆ s(Bess)× Tk, we define the B-saturation of W to be the set

W · (Bess)⊥ = {(x,wz) : (x,w) ∈ W and (x, z) ∈ (Bess)⊥}.
Equivalently,

W · (Bess)⊥ =
⋃

(x,w)∈W

{(x, z) : zc(γ) = wc(γ) for all γ ∈ Bess
x }.

Theorem 4.2. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Let π : X ×Tk → Prim(C∗(GT ))
be as in Notation 4.1. Let A ⊆ Prim(C∗(GT )) be an open subset. Suppose that (x, z) ∈
π−1(A) and that (Bα)α∈Jx is a family of open bisections such that α ∈ Bα ⊆ c−1(c(α))
for each α ∈ Jx. Then there exist an open neighbourhood U ⊆ Bx ∩X of x and an open
neighbourhood V ⊆ Tk of z such that the B-saturation (U × V ) · (Bess)⊥ of U × V is
contained in π−1(A).

Remark 4.3. The condition in the conclusion of the theorem that (U × V ) · (Bess)⊥ ⊆
π−1(A) can be restated as follows: whenever x1 ∈ U , z1 ∈ V , and z2 ∈ Tk satisfy
(z1)

h = (z2)
h for every h ∈ c(Jx) ∩ c(Bess

x1
), we have (x1, z2) ∈ π−1(A).

Proof of Theorem 4.2. We prove the contrapositive; that is, we consider a point (x, z) ∈
X × Tk and a sequence (xi, zi, z

′
i)i∈N ∈ X × V × Tk satisfying
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(i) xi → x and zi → z as i→ ∞,
(ii) for every i ∈ N, we have (zi)

h = (z′i)
h for all h ∈ c(

⋃
B ∩ Iess

xi
), and

(iii) for every i ∈ N, we have (xi, z
′
i) /∈ π−1(A),

and we prove that (x, z) ̸∈ π−1(A).
Since A is open in the hull-kernel topology, there is an ideal I ⊆ C∗(GT ) such that

A = {P ∈ Prim(C∗(GT )) : I ̸⊆ P}. Condition (iii) implies that each (xi, z
′
i) ̸∈ π−1(A),

and hence that each ker(π(xi,z′i)
) ̸∈ A; so

I ⊆ ker(π(xi,z′i)
) for all i. (4.3)

Let H be the subgroup of Zk generated by⋃∞
i=1

(⋂∞
j=i c(Bess

xi
)
)
= {h ∈ c(Jx) : (xi, h, xi) ∈ B(x,h,x) ∩ Iess for large i}. (4.4)

Since subgroups of Zk are finitely generated, by discarding finitely many terms in the
sequence (xi, zi, z

′
i)i and relabelling, we may assume that

H ⊆ c(Bess
xi
) ⊆ c(Iess

xi
) for all i. (4.5)

Let πH
(x,z) : C

∗(GT ) → B(ℓ2([x]) ⊗ ℓ2(Zk/H)) be the representation of Proposition 3.1.
We will show that

I ⊆ ker(πH
(x,z)) ⊆ ker(π(x,z)), (4.6)

giving (x, z) /∈ π−1(A) as required. Since ker(π(x,z)) = ker(πZk

(x,z)) (see Remark 3.2), the
second inclusion in (4.6) follows from Proposition 3.1, so we just have to establish that
I ⊆ ker(πH

(x,z)).
By the final statement of Lemma Lemma 3.4 it suffices to prove that

⟨e[(x,0,x)]H , πH
(x,z)(f)e[(x,0,x)]H ⟩ = 0, (4.7)

for all f ∈ I.
Fix f ∈ I and ε > 0, and choose g ∈ Cc(GT ) such that ∥f − g∥ < ε/3. Since g has

compact support, there is a finite subset F ⊆ Zk such that

supp(g) ⊆
⋃
h∈F

c−1(h).

We have
⟨e[(x,0,x)]H , πH

(x,z)(g)e[(x,0,x)]H ⟩ =
∑

h∈H∩F

zhg(x, h, x). (4.8)

By (i), there exists i ∈ N such that∣∣∣∣∣ ∑
h∈H∩F

zhg(x, h, x)−
∑

h∈H∩F

(zj)
hg(xj, h, xj)

∣∣∣∣∣ < ε/3 (4.9)

for all j ≥ i.
We now make a few observations. The set

{h ∈ Zk : (zi)
h = (z′i)

h and (xi, h, xi) ∈ Iess for large i}
is a subgroup of Zk that contains H by (ii). After possibly discarding finitely many terms
of the sequence (xi, zi, z

′
i) and re-indexing, we may therefore assume that (zi)

h = (z′i)
h

and (xi, h, xi) ∈ Iess for all i ∈ N and all h ∈ H ∩ F .
Since F is finite, by passing to a subsequence of the (xi, zi, z

′
i)i and re-indexing, we

may further assume that for every h′ ∈ F either (xi, h
′, xi) ∈ Iess for all i ∈ N or

(xi, h
′, xi) ̸∈ Iess for all i ∈ N.

Suppose that h′ ∈ F satisfies (xi, h
′, xi) ∈ Iess for all i ∈ N and that there is a

subsequence (xij)j∈N of (xi)i∈N such that (xij , h
′, xij) ∈ supp(g) for all j. Since supp(g)
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is compact, every subsequence of (xij , h′, xij)j has a convergent subsequence, and since
xi → x, the limit is (x, h′, x). Hence (xij , h

′, xij) → (x, h′, x). In particular, h′ ∈ Jx and
(xij , h

′, xij) ∈
⋃

B for large j, so h′ ∈ H.
By the preceding paragraph, if h′ ∈ F satisfies (xi, h

′, xi) ∈ Iess for all i but h′ ̸∈ H,
then g(xi, h, xi) = 0 for large i. So for each such h′, by discarding finitely many terms of
the sequence (xi, zi, z

′
i) and relabelling again, we may assume that g(xi, h, xi) = 0 for all

i ∈ N, whenever h′ ∈ F \H satisfies (xi, h
′, xi) ∈ Iess for all i.

For each i ∈ N, let Ei be the conditional expectation on C∗(GT ) satisfying

Ei(f
′)((w, p, y)) =

∫
c(Iess

xi
)⊥
zpf((w, p, y)) dz

for f ′ ∈ C∗(GT ) and (w, p, y) ∈ GT .
Since (zi)

h = (z′i)
h and (xi, h, xi) ∈ Iess for h ∈ H ∩ F , and g(xi, h, xi) = 0 for

h ∈ {h′ ∈ F : (xi, h
′, xi) ∈ Iess for all i ∈ N} \H,∑
h∈H∩F

(zi)
hg(xi, h, xi) =

∑
h∈H∩F

(z′i)
hg(xi, h, xi)

=
∑

h∈F∩c(Iess
xi

)

(z′i)
hg(xi, h, xi)

= ⟨δxi
, π(xi,z′i)

(Ei(g))δxi
⟩. (4.10)

Since H ⊆ Iess
xi

for all i (see (4.5)), Lemma 3.5 shows that Ei(ker(π
H
(xi,z′i)

)) ⊆ ker(πH
(xi,z′i)

)

for all i. So it follows from (4.3) that that Ei(f) ∈ ker(πH
(xi,z′i)

) for all i. Since ∥f−g∥ < ε/3

and each Ei is a contraction, we deduce that∣∣∣⟨exi
, πH

(xi,z′i)
(Ei(g))exi

⟩
∣∣∣ < ε/3.

Combining this with (4.8), (4.9), and (4.10), we conclude that∣∣⟨e[(x,0,x)]H , πH
(x,z)(g)e[(x,0,x)]H ⟩

∣∣ < 2ε/3,

and since ∥f − g∥ < ε/3 it follows that∣∣⟨e[(x,0,x)]H , πH
(x,z)(f)e[(x,0,x)]H ⟩

∣∣ < ε.

As ε > 0 was arbitrary this proves the claim (4.7). □

This result allows us to infer that the map π is continuous. Elementary examples (such
as the dumbbell graph—see Section 10.1) show that it is not typically open.

Corollary 4.4. The map π : X × Tk → Prim(C∗(GT )) of Notation 4.1 is continuous.

Proof. Pick an open set A ⊆ Prim(C∗(GT )) and take (x, z) ∈ π−1(A). Since GT is étale,
there exists a collection B = (Bα)α∈Jx of open bisections such that α ∈ Bα ⊆ c−1(c(α)) for
all α ∈ Jx. Theorem 4.2 implies that there are open sets U ⊆ X and V ⊆ Tk containing
x and z, respectively, such that (U ×V ) · (Bess)⊥ ⊆ π−1(A). Since (Bess)⊥ is a bundle over
s(Bess) of subgroups of Tk it contains s(Bess)×{1}. Since B0 is a neighbourhood of (x, 0, x),
it contains an open neighbourhood (x, 0, x) ∈ U ′ ⊆ G

(0)
T ⊆ Iess, so U ′×{1} ⊆ s(Bess)×{1}.

In particular (U ∩ U ′) × V = (U × V ) · (U ′ × {1}) is an open subset of X × Tk and we
have (x, z) ∈ (U ∩ U ′)× V ⊆ π−1(A). Hence π−1(A) is open in X × Tk, and therefore π
is continuous. □
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5. The sandwiching lemma for Deaconu–Renault groupoids

In [BCS22, Lemma 3.3], we proved that for any étale groupoid G and any ideal I ⊆
C∗(G), the set

U = {x ∈ G(0) : j(f)(x) ̸= 0 for some f ∈ I ∩ C0(G
(0))}

is the unique smallest open invariant set such that I ⊆ IU = C∗(G|U), and

V = {x ∈ G(0) : j(a)(x) ̸= 0 for some a ∈ I}
is the unique largest open invariant set such that C∗(G|V ) = IV ⊆ I. We refer to U and
V as the sandwich sets related to I.

In this section, we identify the sandwich sets for an ideal I of the C∗-algebra of a
Deaconu–Renault groupoid GT , and relate them to the open set {(x, z) ∈ X × Tk :
I ̸⊆ ker(π(x,z))} corresponding to a representation π(x,z) as in Notation 4.1. This serves to
relate the sandwiching lemma to Katsura’s results for singly-generated dynamical systems
in Section 10.

We first need to know that if the groupoid GT admits a unit x with dense orbit, then
the direct sum of the representations π(x,z) as z ranges over Tk is faithful.

Lemma 5.1. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. For x ∈ X and z ∈ Tk let π(x,z)
be as in Notation 4.1. Suppose that x ∈ X satisfies [x] = X. Then

⊕
z∈Tk π(x,z) is a

faithful representation of C∗(GT ). In particular, writing λx for the regular representation
of C∗(GT ) on ℓ2((GT )x), we have ker

(⊕
z∈Tk π(x,z)

)
= ker(λx).

Proof. We identify the groupoid GT with the groupoid of the topological higher-rank
graph Λ defined by Λn = X × {n} for all n, range and sources maps given by s(x, n) =
(T n(x), 0) and r(x, n) = (x, 0) and factorisation rules (x,m)(Tm(x), n) = (x,m + n) =
(x, n)(T n(x),m). The isomorphism C∗(GT ) ∼= C∗(Λ) induced by this identification car-
ries C0(G

(0)
T ) to C0(Λ

0). Hence, by [CLSV11, Corollary 5.21], it suffices to show that⊕
z∈Tk π(x,z) is faithful on C0(X) and that there is an action β of Tk on

⊕
z∈Tk ℓ2([x]) such

that βw ◦ (
⊕

z∈Tk π(x,z)) = (
⊕

z∈Tk π(x,z)) ◦ γw for all w ∈ Tk.
For the first statement, observe that since [x] = X, if f ∈ C0(X) is nonzero, then there

exists y ∈ [x] such that f(y) ̸= 0. Thus, for any z we have ⟨ey, π(x,z)(f)ey⟩ = f(y) ̸= 0.
So

⊕
z π(x,z)(f) ̸= 0.

For the second, to keep notation straight, identify
⊕

z∈Tk ℓ2([x]) with ℓ2([x]×Tk) so that
the copy of ℓ2([x]) corresponding to z ∈ Tk is identified with ℓ2([x]× {z}) ⊆ ℓ2([x]×Tk).

For each z ∈ Tk write Hz for the summand of
⊕

z∈Tk ℓ2([x]) corresponding to z, and
denote the canonical orthonormal basis for Hz by {ezy : y ∈ [x]}. For each w ∈ Tk, let Uw :⊕

z Hz →
⊕

z Hz be the unitary given by Uwe
z
y = ewz

y . By definition, π(x,z) = π(x,1) ◦ γz,
regarded as representations on ℓ2([x]). So regarding π(x,z) as a representation on Hz and
π(x,1) as a representation on H1, we have π(x,z) = AdUz ◦π(x,1) ◦ γz. Hence

π(x,z) ◦ γw = AdUz ◦π(x,1) ◦ γz ◦ γw
= AdUz ◦AdU∗

wz
◦π(x,wz)

= AdU∗
w
◦π(x,z).

So βw = AdU∗
w

gives the desired action. □

Now we characterise the sandwich sets for an ideal in C∗(GT ).

Proposition 5.2. Let X be a second-countable locally compact Hausdorff space and sup-
pose that T : Nk ↷ X is an action by local homeomorphisms. For x ∈ X and z ∈ Tk, let
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π(x,z) be as in Notation 4.1. Let I be an ideal of C∗(GT ), and let U and V be the sandwich
sets related to I. The set

W = {(x, z) ∈ X × Tk : I ̸⊆ ker(π(x,z))} (5.1)

is open and

X \ V = {x ∈ X : ({x} × Tk) ∩W = ∅} and U = {x ∈ X : {x} × Tk ⊆ W}.

Proof. Since I is an ideal in C∗(GT ), the set {P ∈ PrimC∗(GT ) : I ⊆ P} is open, and W
is the preimage of this open set under π : X ×Tk → PrimC∗(GT ) which is continuous by
Corollary 4.4.

Observe that if f ∈ Cc(GT |V ), y ∈ X \ V , and z ∈ Tk, then we have π(y,z)(f) = 0,
so by continuity, we have IV ⊆ ker(π(y,z)) for all z. In particular, I ⊆ IV ⊆ ker(π(y,z)),
which implies that (y, z) ̸∈ W for all y ∈ X \ V and z ∈ Tk. That is, X \ V ⊆ {x ∈
X : ({x} × Tk) ∩W = ∅}. For the reverse containment, let x ∈ X and suppose that
({x} × Tk) ∩W = ∅. Then I ⊆

⋂
z∈Tk ker(π(x,z)), so I ⊆ ker(λx) where λx is the regular

representation of C∗(GT ) by Lemma 5.1. If j : C∗(GT ) → C0(GT ) is Renault’s map, then
j(a)|(GT )x = 0 for all a ∈ I. In particular, j(I)(x) = {0}, so that x ̸∈ V .

For the second statement, first observe that C0(U) ⊆ ker(π(x,z)) if and only if x ̸∈ U .
Since C0(U) ⊆ IU ⊆ I, if x ∈ U then I ̸⊆ ker(π(x,z)) for all z ∈ Tk. Hence if x ∈ U then
{x} × Tk ⊆ W . Thus U ⊆ {x ∈ X : x× Tk ⊆ W}.

For the reverse containment, let O = {x ∈ X : {x} × Tk ⊆ W}. Then X \ O is the
image of (X × Tk) \W under the projection map which is closed because Tk is compact,
so O is open in X. It is invariant by [SW16, Theorem 3.2]. Since U is the largest open
invariant set such that IU ⊆ I, so to see that O ⊆ U it suffices to show that IO ⊆ I.
Recall from [SW16, Theorem 3.2] that Prim(C∗(GT )) = {ker(π(x,z)) : x ∈ X, z ∈ Tk} as a
set. Since every ideal of a separable C∗-algebra is the intersection of the primitive ideals
that contain it, we have

I =
⋂

{(x,z):I⊆ker(π(x,z))}

ker(π(x,z)) =
⋂

(x,z)∈(X×Tk)\W

ker(π(x,z)).

Let K = X \O and observe that (X × Tk) \W ⊆ (X × Tk) \ (O × Tk) = K × Tk. So

I ⊇
⋂

(x,z)∈K×Tk

ker(π(x,z)) =
⋂
x∈K

( ⋂
z∈Tk

ker(π(x,z))
)
=

⋂
x∈K

ker
(⊕

z∈Tk

ker(π(x,z))
)
.

For each x, write λx for the regular representation of C∗(GT ) on ℓ2((GT )x). Then
Lemma 5.1 gives

I ⊇
⋂
x∈K

ker(λx) = ker
(⊕

x∈K

λx

)
.

This is precisely the regular representation of C∗(GT |K), and since Deaconu–Renault
groupoids are amenable, it is faithful on C∗(GT |K). So by, for example, [Sim20, Proposi-
tion 4.3.2], we have ker

(⊕
x∈K λx

)
= IX\K = IO. Therefore, IO ⊆ I as claimed. □

By [BCS22, Theorem 3.5], in order to understand the ideals of the C∗-algebras of an
action T : Nk ↷ X it suffices to describe the purely non-dynamical ideals with full support;
this is the ideals I satisfying I ∩C0(X) = {0} and supp(I) = GT . The following corollary
describes an obstruction to the existence of such an ideal (cf. [BCS22, Section 4]).

Corollary 5.3. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Suppose that I is an ideal of
C∗(GT ) such that I ∩C0(X) = {0} and supp(I) = GT . For every x ∈ X and every family
(Bα)α∈Jx of open bisections such that α ∈ Bα ⊆ c−1(c(α)) for each α ∈ Jx, there is a
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neighbourhood U of X such that Bess
y ̸= {y} for all y ∈ U . In particular, Iess

x (GT ) ̸= {x}
for all x ∈ X.

Proof. Let W be as in (5.1) and let Wx = {z ∈ Tk : (x, z) ∈ W} for every x ∈ X. Since
I ∩ C0(X) = {0} and supp(I) = GT , the sandwich sets for I are U = ∅ and V = X, so
each Wx is a nonempty and proper subset of Tk by Proposition 5.2.

Fix x ∈ X, and a family B = (Bα)α∈Jx of open bisections such that α ∈ Bα ⊆ c−1(c(α))
for each α ∈ Jx. Since Wx is nonempty, there exists z ∈ Tk such that (x, z) ∈ W .
Theorem 4.2 shows that there exist an open neighbourhood U ⊆ Bx ∩ X of x and an
open neighbourhood V ⊆ Tk of z such that (U ×V ) · (Bess)⊥ ⊆ W . In particular, for each
y ∈ U we have (Bess

y )⊥ · z ⊆ Wy ⊊ Tk. This forces (Bess
y )⊥ ⊊ Tk and hence Bess

y ̸= {y}.
For the final statement, just observe that the preceding paragraph implies in particular

that Bess
x ̸= {x}, and since Bess

x ⊆ Iess
x (GT ), the result follows. □

We now obtain an obstruction ideal, in the sense of Ara–Lolk [AL18, Definition 7.11]
for a Deaconu–Renault groupoid.

Corollary 5.4. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Let W ′ = s(Iess(GT ) \X)◦, and
let W be the set of points x ∈ X such that for every family (Bα)α∈Jx of open bisections
such that α ∈ Bα ⊆ c−1(c(α)) for each α ∈ Jx, there is a neighbourhood U of X such
that Bess

y ̸= {y} for all y ∈ U . Then W ⊆ W ′, and if I is an ideal of C∗(GT ) such that
I ∩ C0(X) = {0}, then I ⊆ IW .

Proof. The inclusion W ⊆ W ′ is clear so we just need to prove the second containment.
Let U and V be the sandwich sets for I, and note that U = ∅ because I ∩ C0(X) =
{0}. Moreover, I ⊆ IV ∼= C∗(GT |V ), so we can regard I as an ideal of C∗(GT |V ) with
I ∩ C0(V ) = {0} and supp(I) = GT |V . Now Corollary 5.3 implies that V ⊆ W . □

Remark 5.5. The definition of W in Corollary 5.4 is more technical than that of W ′, but
W can be strictly smaller, so it provides a better estimate. For example, in the instance
of the dumbbell graph of Example 2.7, the essential isotropy at every unit is nontrivial,
and so the set W ′ of Corollary 5.4 is all of E∞. However, as we will see in Section 10.1
below, it is straightforward to construct a family B = (Bα)α∈Je∞ of bisections such that
for n ̸= 0, we have B(e∞,n,e∞) ∩ I(GE) = {(e∞, n, e∞)}. So the set W of Corollary 5.4 is
the (open) orbit of g∞, which is the support of the minimal obstruction ideal described
in [BCS22, Definition 4.3].

6. Harmonious families of bisections

Our main result requires the concept of a harmonious family of bisections based at a
unit. Recall from Notation 2.4 that for an etale groupoid G, we write Jx = Iess(G)x. We
emphasise that harmonious families of bisections are meaningful for any étale groupoid
but we shall only study the case of groupoids GT of actions T : N2 ↷ X by local homeo-
morphisms.

Definition 6.1. A harmonious family of bisections based at a unit x ∈ X is a collection
B = (Bα)α∈Jx of open bisections of GT satisfying the following conditions:

(i) Bx ⊆ X;
(ii) α ∈ Bα ⊆ c−1(c(α)) for all α ∈ Jx;
(iii) (Bα ∩ Iess)−1 = Bα−1 ∩ Iess for all α;
(iv) Bα(Bβ ∩ Iess) ⊆ Bαβ for all α, β ∈ Jx; and
(v) for each α ∈ Jx there exists a compact set Kα ⊆ G(0) such that s(Bα) = Kα ∩Bx.
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In particular,
⋃

B ⊆ s−1(Bx). We say a unit x ∈ X admits a harmonious family of
bisections if there exist a harmonious family of bisections based at x and we frequently
just say that (Bα)α∈Jx is a harmonious family of bisections ; it is implicit that it is based
at x.

Remark 6.2. If B = (Bα)α∈Jx is a harmonious family of bisections in GT , then Bess
y is a

subgroup of (GT )y for every y ∈ Bx ⊆ X, and determines a subgroup

HB(y) := c(Bess
y ) ≤ c(Jx) ≤ Zk.

We have

HB(y) = {n ∈ Zk : (x, n, x) ∈ Jx and (y, n, y) ∈ B(x,n,x) ∩ Iess}.

Remark 6.3. Condition (v) in Definition 6.1 is a technical condition that captures two
special cases:

(1) if there are bisections Bα satisfying (i)–(iv) that are all compact open sets, then
Condition (v) is satisfied since we can take Kα = s(Bα) for all α; and

(2) if there are bisections Bα satisfying (i)–(iv) such that s(Bα) = Bx for all α ∈ Jx

(such as when T is an action by homeomorphisms), then for any precompact open
U such that x ∈ U ⊆ U ⊆ Bx, the sets (BαU)α also satisfy (i)–(iv), and they
satisfy (v) since we can take Kα = U for all α.

The condition is used in the proof of Proposition 7.2 to show that the functions 1Bαϕ are
continuous.

Example 6.4. (1) Any isolated unit admits harmonious families of bisections.
(2) If GT is a Deaconu–Renault groupoid that is strongly effective, then Jx = {x} for

every unit x, and GT admits a harmonious family of bisections.

For the following, recall that a subset C of the groupoid GT is homogeneous, if c(C) is
a singleton.

Lemma 6.5. Let X be a second-countable locally compact Hausdorff space and suppose
T : Nk ↷ X is an action by local homeomorphisms. Suppose that B = (Bα)α∈Jx is a
harmonious family of bisections based at x ∈ X, and that C is an open and homogeneous
bisection such that x ∈ s(C). Let γ ∈ C be the unique element such that s(γ) = x.
Then (CBαC

−1)α∈Jx is a harmonious family of bisections at r(γ). In particular, if x ∈ X
admits a harmonious family of bisections then every element in the orbit of x admits a
harmonious family of bisections.

Proof. For any α ∈ Jx, we have

γαγ−1 ∈ CBh(x)C
−1.

Since Iess(GT ) is a normal subgroupoid by Lemma 2.2 the map α 7→ γαγ−1 is a group
isomorphism between Iess(GT )x and Iess(GT )z, so (CBαC

−1)α∈Jx is a family of bisections
indexed by Jz.

For each β ∈ Jz, let Cβ := CBγ−1βγC
−1 and write C = (Cβ)β∈Jz = (CBαC

−1)α∈Jx .
The set CBxC

−1 is contained in X and contains z := r(γ), which is Definition 6.1(i).
Fix β ∈ Jz and let α = γ−1βγ. Then α ∈ Jx, and we have β = γαγ−1 ∈ Cβ. For any

ζ ∈ Cβ = CBαC
−1, there exist η ∈ Bα and ρ, τ ∈ C such that ζ = ρητ−1. Since C is

homogeneous, we have c(ρ) = c(τ), and so c(ζ) = c(ρ) + c(η) − c(τ) = c(η) ∈ c(Bα) =
{c(α)}. Applying this to ζ = β we see that c(β) = c(α) as well, and so Cβ ⊆ c−1(c(β)),
giving Definition 6.1(ii).

Next fix α ∈ Jx and η ∈ CBαC
−1 ∩ Iess. Then η−1 ∈ Iess by Lemma 2.2. We need

to verify that η−1 ∈ C(γαγ−1)−1 . Write η = ξθξ−1. Then by Lemma 2.2 again, θ ∈ Iess.
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We have θ−1 ∈ Bα−1 by definition of a harmonious family of bisections, so we see that
η−1 = ξθ−1ξ−1 ∈ CBα−1C−1, which is Definition 6.1(iii).

Since C−1C = s(C), for β, η ∈ Jz, we have CβCη = CBγ−1βγC
−1CCγ−1ηγC

−1 ⊆
CBγ−1βγγ−1ηγC

−1 = Bγ−1βηγ = Cβη, giving Definition 6.1(iv).
Choose compact subsets Kα ∈ X satisfying s(Bα) = Kα ∩ Bx for every α ∈ Jx. Let

K ′
γαγ−1 = CKαC

−1 for each α ∈ Jx. Then

CKα(x)C
−1 = r ◦ (s|C)−1(Kα(x)).

Since r◦(s|C)−1 is the canonical partial homeomorphism associated to the bisection C, we
see that K ′

α(z) is a compact subset of X. Let β := γαγ−1. We claim that s(Cβ) = K ′
β∩Cz.

Computation shows that s(Bβ) = r ◦ (s|C)−1(s(Bα)) and CBxC
−1 = r ◦ (s|C)−1(Bx), so

K ′
βCz = r ◦ (s|C)−1(Kα) ∩ r ◦ (s|C)−1(Bx) = r ◦ (s|C)−1(s(Bα)) = s(Cβ).

This gives Definition 6.1(v).
For the final statement, suppose that x admits a harmonious family of bisections B, fix

z ∈ [x] and γ ∈ (GT )
z
x. Since GT is étale, there is an open bisection C containing γ. Now

the preceding paragraphs show that (CBαC
−1)α∈Jx is a harmonious family of bisections

based at z. □

The main obstacle in applying our strongest results is establishing the existence of
harmonious families of bisections at all points for a given action of Nk by local home-
omorphisms. Next we outline some techniques for constructing harmonious families of
bisections that apply to a large class of examples among them actions by commuting
homeomorphisms, a single local homeomorphism, and 2-graphs in Section 10. We leave it
as an open problem to determine if every Deaconu–Renault groupoid admits harmonious
families of bisections.

The first existence result applies e.g. to actions of commuting homeomorphisms, cf. Sec-
tion 10.3.

Lemma 6.6. Let X be a second-countable locally compact Hausdorff spaces and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Let x ∈ X. Suppose there
are open bisections (Bα)α∈Jx satisfying α ∈ Bα ⊆ c−1(c(α)) and BαBβ = Bαβ for all
α, β ∈ Jx. Then x admits a harmonious family of bisections.

Proof. We have BαBα−1 = Bx = Bα−1Bα for each α, and this implies that Bx ⊆ r(Bα).
In particular, Bx ⊆ X and this is (i) in Definition 6.1. By assumption, we have α ∈ Bα ⊆
c−1(c(α)) and this is (ii). Since BxBα = Bxα = Bα, we have r(Bα) ⊆ Bx, and combined
with the first sentence this gives equality. Hence the Bα are a subset of the group B(X)
of open bisections with range and source equal to Bx, and they constitute the range of
the homomorphism α 7→ Bα. So {Bα : α ∈ Jx} is a subgroup of B(X). Since the inverse
operation in B(X) is implemented by pointwise inverses in G, we obtain Bα−1 = B−1

α , and
we already have BαBβ = Bαβ for all α, β, so (iii) and (iv) are trivial. The final condition
(v) is automatic by Remark 6.3(2) □

Corollary 6.7. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Let x ∈ X. Suppose that
M ⊆ Zk satisfies |M | = rank(c(Jx)) and c(Jx) = spanZ(M). Suppose that there is an
open neighbourhood Bx ⊆ X of x and a collection of open bisections (Bα)α∈M such that

(1) each α ∈ Bα ⊆ c−1(c(α)),
(2) BαBβ = BβBα for all α, β ∈M ∪ −M , and
(3) r(Bα) = s(Bα) = Bx for all α ∈M .

Then x admits a harmonious family of bisections.
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Proof. The hypotheses guarantee that there is a well-defined map γ 7→ Bγ from the group
generated by M to the collection of open bisections of GT such that for every function
n :M → Z, we have

B∏
α∈M αn(α) =

∏
α∈M+(x)

Bn(α)
α .

An induction using (2) and (3) shows that these Bγ satisfy the hypotheses of Lemma 6.6,
and the result follows. □

Our next existence result will be applied to the case of 2-graphs in Section 10.5.

Lemma 6.8. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Let x ∈ X. Suppose that M ⊆ Jx

generates Jx as a group and that |M | = rank(Jx). Suppose that {Bα : α ∈M} is a family
of compact open bisections satisfying

(1) α ∈ Bα ⊆ c−1(c(α)) for all α ∈M ,
(2) BαBβ = BβBα for all α, β ∈M , and
(3) BαB

−1
β ⊆ B−1

β Bα for all α, β ∈M .
For each γ ∈ Jx and α ∈ M , let mα(γ) be the integers such that γ =

∏
α∈M αmα(γ).

Taking the convention that the empty product is equal to X, the sets

Bγ :=
( ∏

mα(γ)<0

Bmα(γ)
α

)( ∏
mα(γ)>0

Bmα(γ)
α

)
,

indexed by γ ∈ Jx constitute a harmonious family of bisections at x.

Proof. The bisections (Bα)α pairwise commute, so the formula for Bγ is well-defined. We
must verify the five conditions of Definition 6.1. We have Bx ⊆ X, which is (i), by
definition. Since each α ∈ Bα, we have γ ∈ Bγ for all γ, and since each Bα ⊆ c−1(α) and
c is a homomorphism on Jx we have Bγ ⊆ c−1(γ) for all γ; this gives (ii).

To see (iii), note that mα(γ−1) = −mα(γ), and so

Bγ−1 =
∏( ∏

mα(γ−1)<0

Bmα(γ−1)
α

)( ∏
mα(γ−1)>0

Bmα(γ−1)
α

)
=

∏( ∏
mα(γ)>0

Bmα(γ)
α

)−1( ∏
mα(γ)<0

Bmα(γ−1)
α

)−1

= B−1
γ

for all γ ∈ Jx. Since Iess is self-inverse, it follows that (Bγ ∩ Iess)−1 = B−1
α ∩ Iess for all

γ ∈ Jx, which gives (iii).
Finally, for (iv), First note that a simple induction using that BαB

−1
β ⊆ B−1

β Bα for all
α, β ∈M shows that for any pair of functions p, q :M → N we have( ∏

α∈M

Bp(α)
α

)( ∏
α∈M

B−q(α)
α

)
⊆

( ∏
α∈M

B−q(α)
α

)( ∏
α∈M

Bp(α)
α

)
.

We deduce that for γ, δ ∈ Jx, we have

BγBδ =
( ∏

mα(γ)<0

Bmα(γ)
α

)( ∏
mα(γ)>0

Bmα(γ)
α

)( ∏
mα(δ)<0

Bmα(δ)
α

)( ∏
mα(δ)>0

Bmα(δ)
α

)
⊆

( ∏
mα(γ)<0

Bmα(γ)
α

)( ∏
mα(δ)<0

Bmα(δ)
α

)( ∏
mα(γ)>0

Bmα(γ)
α

)( ∏
mα(δ)>0

Bmα(δ)
α

)
= Bγδ.

Hence Bγ(Bδ ∩ Iess) ⊆ BγBδ ⊆ Bγδ, giving (iv).
Since the Bα are compact open, so are the Bγ, and so condition (v) is automatic. □
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Example 6.9. If GT is a minimal Deaconu–Renault groupoid, then J (GT ) = I◦(GT ) by
[KPS16, Proposition 2.1]. As in Section 2.5, H(x) = c(I◦(GT )x) is constant with respect
to x, and writing H for this group, Jx = Iess

x = I◦
x = {x} × H × {x} for all x. So for

n ∈ H, the set B(n) := {(x, n, x) : x ∈ X} is a bisection. These B(n) pairwise commute,
and each commute with any subset of G(0)

T . So for each x ∈ X and n ∈ H, choosing
a precompact open neighbourhood Wx of x and putting B(x,n,x) := WxB(n) for each n
determines a harmonious family of bisections Bx = (Bα)α∈Jx .

To make use of results like Lemma 6.8 or Corollary 6.7, we need to be able to identify free
generators of a given subgroup of Zk. When working with Deaconu–Renault groupoids,
it is often helpful to work with minimal collections of generators in Nk. So we prove that
every rank-k subgroup of Zk admits k free generators in Nk that are minimal with respect
to the usual algebraic order. This is surely well known, but we could not find a reference.
We found the key idea behind the proof on Math StackExchange [Kot12].

We make use of the usual lattice order ≤ on Zk; so m ≤ n if n−m ∈ Nk. For i < k we
also identify Zi with the subgroup of Zk consisting of elements whose final k−i coordinates
are zero. So Ni \ Ni−1 = Ni−1 × (N \ {0})× {0k−i}.

Lemma 6.10. Let H ⊆ Zk be a subgroup of rank k. Then there exist m1, . . . ,mk ∈ Nk∩H
such that

(1) each mi is a minimal element of Nk ∩H \ {0},
(2) for each i ≤ k, we have mi ∈ Ni \ Ni−1,
(3) H =

⊕
i Zmi.

Proof. Since the rank ofH is k, any k elements that generateH are free abelian generators,
so it suffices to establish that there exist m1, . . . ,mk ∈ Nk ∩H satisfying (1) and (2) such
that H = spanZ{m1, . . . ,mk}.

We argue by induction on k. For k = 1, the result is trivial. So suppose inductively
that every rank-(k − 1) subgroup H ′ of Zk−1 has such generators. Let π : Zk → Z be the
homomorphism π(n) = nk onto the kth coordinate, so ker(π) = Zk−1. Since π(H) ≤ Z,
we have π(H) = aZ for some a ∈ N. Fix m̃k ∈ H satisfying π(m̃k) = a.

Let H ′ = H ∩ Zk−1. For any h ∈ H, we have a | π(h), and so h′ = h − π(h)
a
m̃k ∈ H ′,

and so h = h′ + π(h)
a
m̃k ∈ Zm̃k + H ′. So H is generated by {m̃k} ∪ H ′. This implies in

particular that rank(H) ≤ 1 + rank(H ′), so rank(H ′) ≥ k − 1. Hence rank(H ′) = k − 1
because H ′ ⊆ Zk−1. By the inductive hypothesis, there are generators m1, . . . ,mk−1 of
H ∩Nk−1 satisfying (1) and (2). In particular, H = spanZ{m1, . . . ,mk−1, m̃k} where each
mi is in Ni \ Ni−1.

Since each mi
i ̸= 0, there exist a1, . . . , ak−1 ≥ 0 such that aimi

i + m̃k
i ≥ 0. Since each

mi
j ≥ 0, we deduce that

(∑
i aim

i
)
+m̃k ∈ Nk. Hence C :=

(
m̃k

i +spanZ{m1, . . . ,mk−1}
)
∩

Nk is nonempty, and therefore has a minimal element. We fix a1, . . . , ak such that mk :=
m̃k +

∑
i<k aim

i
i is a minimal element of C. This implies that mi ̸≤ mk for i < k. Then

mk ∈ H∩Nk, andmk
k = m̃k

k > 0. We have m̃k = mk+
∑

i<k(−ai)mi ∈ spanZ{m1, . . . ,mk}.
Hence spanZ{m1, . . . ,mk−1,mk} = spanZ{m1, . . . ,mk−1, m̃k} = H.

It remains to show that m1, . . . ,mk are minimal in H ∩ Nk \ {0}. Fix i < k. Since
m1, . . . ,mk−1 ⊆ Nk−1 and mk

k > 0, we have {p ∈ H ∩ Nk : p < mi} = {p ∈ H ′ ∩ Nk :
p < mi} = {0} by the inductive hypothesis. So mi is minimal in H ∩ Nk \ {0}. To
see that mk is minimal, suppose that p ∈ H ∩ Nk satisfies 0 < p ≤ mk. If p ∈ H ′

then there exists j < k such that mj ≤ p ≤ mk which is impossible as observed in
the preceding paragraph. So p ∈ H \ H ′. Then 0 < π(p) ∈ aZ and π(p) ≤ a, forcing
π(p) = a. Write p =

∑
i bim

i. Since π(mi) = 0 for i < k, we have bk = 1. Hence
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p ∈ mk + spanZ{m1, . . . ,mk−1} ∩Nk = m̃k + spanZ{m1, . . . ,mk−1} ∩Nk = C. Since mk is
minimal in C, we obtain p = mk. □

7. The primitive-ideal space

With the concept of harmonious families of bisections available, we can now state our
second main theorem, which describes a family of subsets of X × Tk that are preimages
of open subsets of Prim(C∗(GT )).

Theorem 7.1. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. For x ∈ X and z ∈ Tk, let
π(x,z) be as in Notation 4.1. Let (x0, z0) ∈ X × Tk and suppose that B = (Bα)α∈Jx0

is a
harmonious family of bisections, and that V ⊆ Tk is an open neighbourhood of z0. Then
the set

A(B, V ) := {ker(π(x,z)) : x ∈ Bx0 , z ∈ V HB(x)
⊥} ⊆ Prim(C∗(GT )) (7.1)

is an open neighbourhood of ker(π(x0,z0)) in Prim(C∗(GT )).

The following technical proposition is the engine-room in the proof of Theorem 7.1.
We think of this result as a kind of noncommutative Urysohn lemma, and we state it
separately so that we can use it later to describe generators for the ideal of C∗(GT )
corresponding to a given open subset of X × Tk in Proposition 8.2. We thank Johannes
Christensen and Sergiy Neshveyev for pointing out an error in the original proof of this
result, and for helpful subsequent conversations.

Proposition 7.2. Let X be a second-countable locally compact Hausdorff space and sup-
pose that T : Nk ↷ X is an action by local homeomorphisms. For x ∈ X and z ∈ Tk,
let π(x,z) be as in Notation 4.1. Let (x0, z0) ∈ X × Tk and suppose B = (Bα)α∈Jx0

is a
harmonious family of bisections, and that V ⊆ Tk is an open neighbourhood of z0. For
any (x, z) ∈ Bx0 × V there exist a function ϕ ∈ Cc(Bx0 , [0, 1]) such that ϕ(x) = 1, a
function ψ ∈ C∞(Tk) such that ψ(z) = 1 and ψ|Tk\V = 0, and an element h0 ∈ Zk such
that the h0-perturbation ψh0 satisfies∑

h∈HB(x)

zhψ̂h0(h) ̸= 0.

For any such ϕ, ψ and h0 the series∑
(x0,h,x0)∈Jx0

ψ̂h0(h)(1B(x0,h,x0)
ϕ)

converges to an element f of C∗(GT ) such that π(x,zw)(f) ̸= 0 for every w ∈ HB(x)
⊥ and

such that f ∈ Q for every primitive ideal Q ̸∈ π((Bx0 × V ) · (Bess)⊥).

Proof. By Urysohn’s lemma there exists ϕ ∈ Cc(X, [0, 1]) such that ϕ(x) = 1 and ϕ|X\Bx0
=

0. By, for example, [Fol99, Chapter 8], there exists ψ ∈ C∞(Tk) such that ψ(z) = 1 and
ψ|Tk\V = 0. By Lemma 2.9, there exists h0 ∈ Zk such that∑

h∈HB(x)

zhψ̂h0(h) ̸= 0.

For each α ∈ Jx0 , by definition of a harmonious family of bisections, there is a compact
subset Kα of X such that s(Bα) = Kα ∩ Bx0 . We claim that this implies that 1Bαϕ is
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continuous. Since Bα is open it suffices to show that if (βn)n is a sequence in Bα and
βn → β then (1Bαϕ)(βn) → (1Bαϕ)(β) as n→ ∞. Since each βn ∈ Bα, we have

(1Bαϕ)(βn) = 1Bα(βn)ϕ(s(βn)) = ϕ(s(βn)),

so we must show that

ϕ(s(βn)) →

{
ϕ(s(β)) if β ∈ Bα

0 if β ̸∈ Bα.

Since ϕ ◦ s is continuous, it therefore suffices to show that if β ̸∈ Bα then ϕ(s(β)) = 0.
So suppose that β ̸∈ Bα. Since Kα is compact and the s(βn) belong to Kα, we have
s(β) ∈ Kα. We claim that s(β) ̸∈ s(Bα). To see this, suppose for contradiction that
s(β) = s(β′) for some β′ ∈ Bα. Since s restricts to a homeomorphism Bα → s(Bα) and
s(βn) → s(β′) we have βn → β′. Since βn → β by hypothesis, and since GT is Hausdorff,
this forces β = β′, contradicting β ̸∈ Bα. Thus s(β) ̸∈ Bα = Kα ∩ Bx0 . We saw that
s(β) ∈ Kα, so we deduce that s(β) ̸∈ Bx0 . Since ϕ vanishes on X \ Bx0 by construction,
we then have ϕ(s(β)) = 0 as required, so 1Bαϕ is continuous.

For each α ∈ Jx0 , it follows from [Sim20, Corollary 9.3.4] that ∥1Bαϕ∥C∗(GT ) = ∥ϕ∥∞ =
1. Since ψ is smooth, its Fourier coefficients are absolutely summable [Fol99, Chapter 8].
Hence the series

∑
(x0,h,x0)∈Jx0

ψ̂h0(h)(1B(x0,h,x0)
ϕ) converges to an element f of C∗(GT ).

Since Renault’s map j : C∗(GT ) → C0(GT ) of [Ren80, Proposition II.4.2] is continuous,
we have

j(f)(y′, h′, x′) =

{
ϕ(x′)ψ̂h0(h) if (y′, h′, x′) ∈

⋃
B,

0 otherwise,
(7.2)

for all (y′, h′, x′) ∈ GT . Fix w ∈ HB(x)
⊥. We must show that π(x,zw)(f) ̸= 0. Let

K := cT (Iess
x ). By Lemma 3.3, it suffices to show that πK

(x,zw)(f) ̸= 0. For this, note that,
by definition, [(x, 0, x)]K = {(x, h, x) : h ∈ K} = Iess

X , and by (7.2), if j(f)(x, h, x) ̸= 0
then (x, h, x) ∈

⋃
B. So if (x, h, x) ∈ [(x, 0, x)]K and j(f)(x, h, x) ̸= 0, then (x, h, x) ∈

Iess
x ∩

⋃
B = Bess

x ; in particular h ∈ HB(x). Hence

⟨e[x,0,x]K , πK
(x,zw)(f)e[x,0,x]K ⟩ =

∑
h∈HB(x)

zhwhψ̂h0(h) =
∑

h∈HB(x)

zhψ̂h0(h) ̸= 0.

Hence πK
(x,zw)(f) ̸= 0 as required.

It remains to show that f ∈ Q for every primitive ideal Q ̸∈ π((Bx0 × V ) · (Bess)⊥). To
see this, fix such a Q. By [SW16, Theorem 3.2], there exists (x1, z1) ∈ X × Tk such that
Q = ker(π(x1,z1)), and it suffices to show that

⟨ey2 , π(x1,z1)(f)ey1⟩ = 0 (7.3)

for all y1, y2 ∈ [x1].
Fix y1, y2 ∈ [x1]. Let H := c(Iy1) = {h ∈ Zk : (y1, h, y1) ∈ GT}. Then HB(y1) ≤ H. Fix

a complete set R ⊆ H of representatives of the cosets of HB(y1) in H. Then H =
⊔

r∈R(r+
HB(y1)). Fix h1, h2 ∈ Zk such that (yi, hi, x1) are in GT . Then (y2, h2 − h1, y1) ∈ GT .

We have

⟨ey2 , π(x1,z1)(f)ey1⟩ =
∑

(y2,h,y1)∈GT

zh1 j(f)((y2, h, y1)) =
∑
h∈H

zh+h2−h1
1 j(f)((y2, h+h2−h1, y1)).

By definition of f , for each h the number j(f)(y2, h + h2 − h1, y1) is equal to either
ϕ(y1)ψ̂h0(h) or to 0. By [Fol99, Chapter 8] as before, the series

∑
h∈Zk ψ̂h0(h) is absolutely
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convergent, and it follows that the series
∑

h∈H z
h+h2−h1
1 j(f)((y2, h+ h2 − h1, y1)) is also

absolutely convergent. So we can rearrange its terms to obtain

⟨ey2 , π(x1,z1)(f)ey1⟩ =
∑
r∈R

∑
h∈HB(y1)

z
h+r+(h2−h1)
1 j(f)((y2, h+ r + (h2 − h1), y1)).

To see that this is zero, fix r ∈ R. It suffices to show that∑
h∈HB(y1)

z
h+r+(h2−h1)
1 j(f)((y2, h+ r + (h2 − h1), y1)) = 0.

The formula (7.2) shows that j(f)((y2, h+ r + (h2 − h1), y1)) = 0 for all h if y1 ̸∈ Bx0 ,
so we may assume that y1 ∈ Bx0 . Letting h′2 := r + h2, we have∑

h∈HB(y1)

z
h+r+(h2−h1)
1 j(f)((y2, h+ r + (h2 − h1), y1))

=
∑

h∈HB(y1)

z
h+(h′

2−h1)
1 j(f)

(
y2, h+ (h′2 − h1), y1

)
.

(7.4)

If (y2, h′2 − h1, y1) /∈
⋃

B, then Condition (iv) of Definition 6.1 implies that

(y2, h+ (h′2 − h1), y1) = (y2, (h
′
2 − h1), y1)(y1, h, y1) /∈

⋃
B

for all h ∈ HB(y1), so once again (7.2) shows that (7.4) vanishes. So we may assume that
(y2, h

′
2 − h1, y1) ∈

⋃
B.

Condition (iv) of Definition 6.1 then implies that (y2, h + (h′2 − h1), y1) ∈
⋃

B for all
h ∈ HB(y1). Thus, using (7.2) again, for each h ∈ HB(y1), we have j(f)

(
y2, h + (h′2 −

h1), y1
)
= ϕ(y1)ψ̂h0(h+ (h′2 − h1)), and so (7.4) becomes∑

h∈HB(y1)

z
h+r+(h2−h1)
1 j(f)((y2, h+ r + (h2 − h1), y1))

= ϕ(y1)
∑

h∈HB(y1)

z
h+(h′

2−h1)
1 ψ̂h0(h+ (h′2 − h1)).

To see that this is zero, let ψh0+(h1−h′
2)

be the (h1 − h′2)-perturbation of ψh0 , and let
χ1 ∈ ĤB(y1) be the character defined by χ1(h) = zh1 , for all h ∈ HB(y1). Recall that
ΦHB(y1),Zk is the averaging map of (2.2). We have

ϕ(y1)
∑

h∈HB(y1)

z
h+r+(h2−h1)
1 ψ̂h0(h+ r + (h2 − h1)) (7.5)

= z
h′
2−h1

1 ϕ(y1)
∑

h∈HB(y1)

zh1 ψ̂h0+(h1−h′
2)
(h)

= z
h′
2−h1

1 ϕ(y1)ΦHB(y1),Zk(ψh0+(h1−h′
2)
)(χ1). (7.6)

In order to show that (7.6) is zero, it now suffices to show that χ1 /∈ q̂HB(y1)(V ),
because supp(ψh0+(h1−h′

2)
) = supp(ψ) ⊆ V as discussed immediately after (2.1), and

hence supp(ΦHB(y1)(ψh0+(h1−h′
2)
)) ⊆ q̂HB(y1)(V ) as discussed just prior to Lemma 2.9. So

it suffices to show that z1w /∈ V for all w ∈ HB(y1)
⊥.

Suppose for contradiction that w ∈ HB(y1)
⊥ satisfies z1w ∈ V . Then z1 ∈ V HB(y1)

⊥,
and hence (y1, z1) ∈ (Bx0 × V ) · (Bess)⊥. Since y1 ∈ [x1], Theorem 3.2 of [SW16] implies
that ker(π(y1,z1)) = ker(π(x1,z1)) = Q, contradicting Q ̸∈ π((Bx0 × V ) · (Bess)⊥).

Thus (7.6) is zero, whence (7.4) is zero, giving (7.3). Hence f ∈ Q. □
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Proof of Theorem 7.1. By definition of the topology on Prim(C∗(GT )), the closed sets are
the sets {Q : Q ⊆ I} indexed by ideals I of C∗(GT ). We must show that the complement
of A(B, V ) is closed, so we fix x ∈ Bx0 , z ∈ V and w ∈ HB(x)

⊥ so that P = ker(π(x,zw)) is
a typical point in A(B, V ). We must show that

⋂
Q∈Prim(C∗(GT ))\A(B,V )Q ̸⊆ P . That is, we

must find fP ∈
⋂

Q∈Prim(C∗(GT ))\A(B,V )Q such that fP ̸∈ P . But this is a direct application
of Proposition 7.2. □

This now leads us to a complete description of the primitive ideal space when the action
T : Nk ↷ X admits sufficiently many harmonious families of bisections.

Definition 7.3. Let X be a second-countable locally compact Hausdorff space and sup-
pose that T : Nk ↷ X is an action by local homeomorphisms. We say that T admits
harmonious families of bisections if every x ∈ X admits a harmonious family of bisec-
tions in GT .

Corollary 7.4. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms that admits harmonious families of
bisections. Let π : X×Tk → Prim(C∗(GT )) be the map of Notation 4.1. Let A be a subset
of Prim(C∗(GT )) such that for every (x0, z0) ∈ π−1(A) there exist a harmonious family of
bisections B at x0 and an open neighbourhood V0 ⊆ Tk of z0 such that (Bx0×V0)·(Bess)⊥ ⊆
π−1(A). Then A is open in Prim(C∗(GT )).

Proof. Fix (x0, z0) ∈ π−1(A). By hypothesis there exist a harmonious family of bi-
sections B based at x0 and an open neighbourhood V0 ⊆ Tk of z0 such that (Bx0 ×
V0) · (Bess)⊥ ⊆ π−1(A). Let V := V0 · (HB(x0))

⊥, the H(x0)-saturation of V0 and let
A(B, V ) ⊆ Prim(C∗(GT )) be the corresponding basic open neighbourhood of ker(π(x0,z0))
as in (7.1). It suffices to show that A(B, V ) ⊆ A. Let (x, z) ∈ π−1A(B, V ). Then there
exist z′ ∈ V0 and w ∈ H(x)⊥ such that z = z′w. Since (Bx0 × V0) · (Bess)⊥ ⊆ π−1(A), we
have (x, z) ∈ π−1(A). Hence A(B, V ) ⊆ A as required. □

Combining Theorem 4.2 and Corollary 7.4, we obtain the following complete description
of the hull-kernel topology.

Corollary 7.5. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms that admits harmonious families
bisections. Let π : X × Tk → Prim(C∗(GT )) be the map of Notation 4.1. A subset A ⊆
Prim(C∗(GT )) is open if and only if for every (x, z) ∈ π−1(A) there exist a harmonious
family of bisections B based at x and an open neighbourhood V ⊆ Tk of z such that
(x, z) ∈ B0 × V and (B0 × V ) · (Bess)⊥ ⊆ π−1(A).

Corollary 7.6. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms that admits harmonious families of
bisections. Let π : X ×Tk → Prim(C∗(GT )) be the map of Notation 4.1. For each x ∈ X,
fix a harmonious family of bisections B(x) = (B(x)α)α∈Jx at x. Then the collection{

π
(
(U × V ) · (B(x)ess)⊥

)
: x ∈ X, x ∈ U ⊆open B(x)x, V ⊆open T

}
is a base for the topology on Prim(C∗(GT )).

Finally, we mention a few immediate examples to illustrate how the base for the topol-
ogy recovers well known results.

Example 7.7. (1) If GT is strongly effective, then as in Example 6.4(2) B := {G(0)
T }

defines a harmonious family of bisections at each x. We then have (U × V ) ·
(B(x)ess)⊥ = U×Tk, and Corollary 7.6 reduces to the statement that the primitive
ideal space is homeomorphic to the quasi-orbit space of GT .
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(2) If GT is minimal, then as in Example 6.9 we have H(x) = H(y) = H for all x, y ∈
X, and GT admits harmonious families of bisections. For the harmonious family
of bisections WxB(n) of Example 6.9, we have (U × V ) · (B(x)ess)⊥ = U × (V H⊥)
whenever U ⊆ Wx. The quasi-orbit space is a point, so ker(π(x,z)) = ker(π(y,w)) if
and only if zH⊥ = wH⊥, and so Corollary 7.6 establishes that Prim(C∗(GT )) is
homeomorphic to H⊥. This recovers [SW16, Theorem 4.7] for T minimal.

(3) In particular, if GT is minimal and effective, then the base for the topology is just
a singleton so C∗(GT ) is simple.

8. The lattice of ideals of C∗(GT )

In this section we apply the results and ideas from the preceding section to describe the
lattice of ideals of C∗(GT ). We provide a partial description for arbitrary T , but in order
to obtain a complete description, we must assume that T admits harmonious families of
bisections.

Let X be a second-countable locally compact Hausdorff space. Suppose that T : Nk ↷
X is an action by local homeomorphisms. Recall from Section 2.4 that for each ideal I in
C∗(GT ),

AI := {P ∈ Prim(C∗(GT )) : I ̸⊆ P}
is open in the hull-kernel topology on Prim(C∗(GT )). So Corollary 4.4 implies that with
respect to the map π : X × Tk → Prim(C∗(GT )) of Notation 4.1, the map

θ : I 7→ π−1(AI) (8.1)

is an injective lattice homomorphism from the ideals of C∗(GT ) into the open subsets of
X × Tk ordered by inclusion.

The range of this lattice homomorphism is difficult to describe in general, but Theo-
rem 4.2 describes a (fairly technical) invariance condition that every AI must satisfy. The
range of θ consists of open sets W that are π-saturated in the sense that W = π−1(π(W )).
However, not every open π-saturated subset of X need be in the range of θ; if it were,
then π would be a quotient map, and [SW16, Remark 3.3 and Example 3.4] show that
this is not the case in general.

To describe the range of θ, and to describe generators of the ideal θ−1(W ) for a given
set W , we must assume that T admits harmonious families of bisections. The description
of the range follows directly from Corollary 7.5.

Lemma 8.1. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms that admits harmonious families
of bisections. Let θ be the lattice homomorphism of (8.1). A subset W ⊆ X ×Tk is in the
image of θ if and only if

(1) W is open and π-saturated, and
(2) whenever (x, z) ∈ W , then there exist a harmonious families of bisections B at x

and an open neighbourhood V ⊆ Tk of z such that (Bx × V ) · (Bess)⊥ ⊆ W .

We may now describe generators for the ideal θ−1(A) corresponding to a given set
satisfying the conditions of Lemma 8.1. The generating elements are exactly the elements
of C∗(GT ) we obtain from the noncommutative Urysohn lemma, Proposition 7.2.

Proposition 8.2. Let X be a second-countable locally compact Hausdorff space and sup-
pose that T : Nk ↷ X is an action by local homeomorphisms that admits harmonious fam-
ilies of bisections. Let θ be the lattice homomorphism of (8.1). Suppose that W ⊆ X ×Tk
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satisfies the conditions of Lemma 8.1. Then

θ−1(W ) =
⋂

(x,z)∈(X×Tk)\W

ker(π(x,z)).

For each (x0, z0) ∈ W , fix a harmonious families of bisections B(x0,z0) at x0 and an open
neighbourhood V (x0,z0) of z0 as in Condition 2 of Lemma 8.1, and let f (x0,z0) be any element
obtained from Proposition 7.2 applied to (x0, z0), B(x0,z0), and V (x0,z0). Then θ−1(W ) is
generated as an ideal by {f (x0,z0) : (x0, z0) ∈ W}.

Proof. Fix a set W in the range of θ. By [RW98, Proposition A.17(a)] the ideal θ−1(W )
is equal to the intersection of the primitive ideals that contain it. Hence Lemma 8.1 gives
the first statement.

Let I = θ−1(W ). By definition of θ, we have W = {(x, z) ∈ X × Tk : I ̸⊆ ker(π(x,z))}.
Let J be the ideal generated by the f (x0,z0). Since every ideal is the intersection of
the primitive ideals containing it and since π is surjective, it suffices to show that for
(x, z) ∈ X × Tk, we have J ⊆ ker(π(x,z)) if and only if (x, z) ̸∈ W .

So fix (x, z) ∈ X × Tk. First suppose that (x, z) ̸∈ W . Then for each (x0, z0) ∈ W ,

A(B(x0,z0), V (x0,z0)) = (B(x0,z0)
x0

× V (x0,z0)) · ((B(x0,z0))ess)⊥ ⊆ W,

so (x, z) ̸∈ A(B(x0,z0), V (x0,z0)). Hence, by Proposition 7.2, f (x0,z0) ∈ ker(π(x,z)). Since
(x0, z0) ∈ W was arbitrary, it follows that all the generators of J belong to the kernel of
π(x,z). So J ⊆ ker(π(x,z)) as required. Now suppose that (x, z) ∈ W . Then π(x,z)(f (x,z)) ̸= 0

by Proposition 7.2. Since f (x,z) is a generator of the ideal J , it belongs to J and so
J ̸⊆ ker(π(x,z)) as required. □

9. Convergence of primitive ideals

Now we apply our results on the primitive ideal space of C∗(GT ) to describe convergence
of primitive ideals. We consider only systems T : Nk ↷ X on second-countable spaces,
so the C∗-algebras C∗(GT ) are separable, and the primitive ideal space Prim(C∗(GT )) is
second-countable (cf. e.g. [RW98, p. 231]), so it suffices to consider convergent sequences.

The map π : X ×Tk → Prim(C∗(GT )) from Notation 4.1 is continuous, so if (xi, zi)i →
(x, z) in X × Tk, then π(xi, zi) → π(x, z) in Prim(C∗(GT )). This is however far from a
complete descrition: many divergent sequences in X×Tk descend to convergent sequences
in Prim(C∗(GT )).

We first describe a weaker sufficient condition for convergence of a sequence of primitive
ideals. In order to do this, we need to extend the notation of Remark 6.2. Suppose that
X is a second-countable locally compact Hausdorff space and suppose that T : Nk ↷ X
is an action by local homeomorphisms. Fix x ∈ X, and let B := (Bα)α∈Jx be a collection
of open bisections such that α ∈ Bα ⊆ c−1(c(α)) for all α ∈ Jx. For each y ∈ X, we
consider the subgroup

HB(y) := spanZ c
(⋃

Bess
y

)
in Zk generated by the values of c on the intersection of

⋃
B with Iess

y . That is,

HB(y) = spanZ{c(α) : α ∈ Jx and Bα ∩ Iess
y ̸= ∅}.

If B is a harmonious family of bisections and y ∈ Bx, then Bess
y is a group by Conditions

(iv) and (iii) of Definition 6.1, so this new definition of HB(y) agrees with the one given
in Remark 6.2.

Now given a subgroup H ⊆ Zk, we let q̂H : Tk → Ĥ be the canonical quotient map.
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Definition 9.1. Suppose that (Hn)n is a sequence of subgroups of Zk. A sequence (zn)n
in Tk converges to z ∈ Tk along (Hn)n if for every open neighbourhood V ⊆ Tk of z in
Tk there exists N ∈ N such that q̂Hn(zn) ∈ q̂Hn(V ) for all n ≥ N .

The following sufficient condition for convergence of primitive ideals applies to any
Deaconu–Renault system.

Proposition 9.2. Let X be a second-countable locally compact Hausdorff space and sup-
pose that T : Nk ↷ X is an action by local homeomorphisms. For x ∈ X and z ∈ Tk, let
π(x,z) be as in Notation 4.1. Let (x, z) ∈ X × Tk and let B = (Bα)α∈Jx be a collection
of open bisections such that α ∈ Bα ⊆ c−1(c(α)) for all α. If (xi, zi)i is a sequence in
∈ X × Tk satisfying xi → x and that zi → z along HB(xi), then ker(π(xi,zi)) → ker(π(x,z))
in Prim(C∗(GT )).

Proof. Fix an open set A ⊆ Prim(C∗(GT )) that contains ker(π(x,z)). We must show that
ker(π(xi,zi)) ∈ A for large i. By Theorem 4.2 there exist an open neighbourhood U ⊆ X of
x and an open neighbourhood V ⊆ Tk of z such that (U ×V ) · (Bess)⊥ ⊆ A. Since xi → x
we see that xi ∈ U for large i, so it suffices to show that zi ∈ V · (Bess

xi
)⊥ for large i.

For each i, let Hi := HB(xi). Since zi → z along (Hi)i, we have q̂Hi
(zi) ∈ q̂Hi

(V ) for
large i. So there exist z′i ∈ V such that for large i, we have (zi)

h = (z′i)
h for all h ∈ Hi.

That is, wi := ziz′i ∈ (Bess
xi
)⊥ for large i, and it follows that zi = wiz

′
i ∈ V · (Bess

xi
)⊥ for large

i as required. □

We can also identify a necessary condition that is valid for all Deaconu–Renault systems.
Recall that the quasi-orbit space Q(G) of an étale groupoid G is the set

{
[x] : x ∈ G(0)

}
of orbit closures in G, in the quotient topology induced by the surjection Q : x 7→ [x] from
G(0) to Q(G).

Lemma 9.3. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. For x ∈ X and z ∈ Tk, let π(x,z)
be as in Notation 4.1. Then the quasi-orbit map q : Prim(C∗(GT )) → Q(GT ) given by
q(ker(π(x,z))) = [x] for all (x, z) ∈ X × Tk is continuous. In particular, if ker(π(xn,zn)) →
ker(π(x,z)) in Prim(C∗(GT )), then [xn] → [x] in Q(GT ).

Proof. Take a closed subset K of Q(GT ) and consider the preimage

W = q−1(K) = {ker(π(x,z)) : [x] ∈ K, z ∈ Tk}.
We aim to show that W is closed in Prim(C∗(GT )). Take ker(π(y,w)) in the closure of W .
By definition of the hull-kernel topology, this means that⋂

x∈K,z∈Tk

ker(π(x,z)) ⊆ ker(π(y,w)).

It suffices to show that [y] ∈ K, so assume for contradiction that this is not the case.
Then y is not in the preimage Y = Q−1(K) which is closed and invariant. By Urysohn’s
lemma, there is a function f ∈ Cc(X, [0, 1]) satisfying f(y) = 1 and f |Y = 0. But then
f ∈ ker(π(x,z)) whenever [x] ∈ K and f /∈ ker(π(y,w)), and this contradicts the inclusion
above. □

Bönicke and Li [BL20, Remark 3.16] observe that Q is a continuous and open surjection
and that Q(G) is T0 and Baire. WhenX is second-countable, the quasi-orbit space Q(GT )
is also second-countable. Therefore, the quasi-orbit map is sequence-covering in the sense
of Siwiec, see [Siw71, Proposition 2.4] (Siwiec assumes that all spaces are Hausdorff but
the proof is valid even if the codomain is not Hausdorff). Indeed, since the quasi-orbit
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map is not just an almost-open map but a bona fide open map, the proof of [Siw71,
Proposition 2.4] establishes the following strong sequence-covering condition:

Lemma 9.4. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms. Suppose that x ∈ X and that
(xn)n is a sequence in X such that [xn] → [x] in Q(GT ). Then there is a sequence (x′n)n
in X such that x′n → x and [x′n] = [xn] for all n.

Proof. Since Q is open, Q(U) is a neighbourhood of [x] in Q(G) for each neighbourhood
U of x. Now putting yn := [xn] ∈ Q(G) for each n, the proof of [Siw71, Proposition 2.4]
starting from the fifth sentence “Let Fn = f−1(yn) . . . ,” establishes the result. □

We will now use Lemma 9.4 together with harmonious families of bisections to obtain
a complete description of convergence of primitive ideals.

Theorem 9.5. Let X be a second-countable locally compact Hausdorff space and suppose
that T : Nk ↷ X is an action by local homeomorphisms that admits bisection families.
For x ∈ X and z ∈ Tk, let π(x,z) be as in Notation 4.1. Take (x, z) ∈ X × Tk, let
B =

(
Bα)α∈Jx be a harmonious family of bisections at x, and let P = ker(π(x,z)). Let

(Pn)n be a sequence in Prim(C∗(GT )). Then Pn → ker(π(x,z)) in Prim(C∗(GT )) if and
only if there is a sequence (x′n, zn)n in X × Tk satisfying

(i) ker(π(x′
n,zn)) = Pn for all n ∈ N,

(ii) x′n → x in X,
(iii) zn → z along (HB(x

′
n))n.

Proof. First suppose that Pn → P . Choose a sequence (xn, zn)n in X × Tk such that
Pn = ker(π(xn,zn)) for all n. Then [xn] → [x] in Q(GT ) by Lemma 9.3. By Lemma 9.4,
there is a convergent sequence (x′n)n in X such that [x′n] = [xn] for all n and x′n → x. We
must show that zn → z along (HB(x

′
n))n. For this, fix an open set V ⊆ Tk containing z.

Theorem 7.1 shows that the set A = A(B, V ) of (7.1) is an open neighbourhood of P , so
Pn ∈ A for large n. Hence for large n there exists z′′n ∈ V such that (zn)

h = (z′′n)
h for all

h ∈ HB(x
′
n). So zn → z along

(
HB(x

′
n)
)
n
.

Conversely, suppose that there is a sequence (x′n, zn) satisfying the three conditions in
the theorem. Assume for contradiction that Pn ̸→ P and choose an open neighbourhood
A of π(x, z) and a subsequence (Pni

)i of (Pn)n such that Pni
̸∈ A for all i. By Theorem 4.2,

there exist an open U ⊆ X containing x and an open V ⊆ Tk containing z such that
(U × V ) · (Bess)⊥ ⊆ π−1(A). In particular, Pni

̸∈ π((U × V ) · (Bess)⊥) for all i. Since
(x′n, zn) satisfies the conditions of the theorem, we have x′ni

∈ U for large i. Since zn → z

along (HB(xn))n, we have zni
→ z along (HB(xni

))i, which forces zni
∈ V · HB(x

′
ni
)⊥ =

V ·HB(xni
)⊥ for large i. Hence (xni

, zni
) ∈ (U ×V ) · (Bess)⊥ for large i, contradicting that

ker(π(xni ,zni )
) = Pni

/∈ A. □

10. Examples

In this section, we provide a number of examples. Firstly, we apply our theorems to
recover the primitive-ideal space of the C∗-algebra of the “dumbbell graph” of Example 2.7,
and then also those of C∗-algebras of arbitrary row-finite graphs with no sources, and of
crossed products of locally compact Hausdorff spaces by actions of Zk. These examples
are intended to be illustrative. The results are not new.

Next we outline how our results and techniques relate to those of Katsura in [Kat21].
Much of the work on the present paper had been completed when Katsura’s work was
posted on the arXiv, so naturally we were interested to determine how the two approaches
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relate. It turns out that our techniques can be used in Katsura’s setting, but not by a
straightforward application of our main theorem. Combining the two approaches seems
like an avenue for future exploration.

Finally, we demonstrate that our results and hypotheses are checkable for all 2-graph
groupoids. The question of how to describe the primitive-ideal spaces of C∗-algebras of
2-graphs was the initial motivation for our line of investigation, so we detail how our main
results answer this question.

10.1. The Dumbell graph. The ideal structure of the C∗-algebra of the dumbell graph
is relatively simple, but illuminating. It is also well-known—it is an example of the
original results of an Huef and Raeburn on primitive-ideal spaces of Cuntz–Krieger alge-
bras [aHR97], and is analysed explicitly in [SW16, Example 3.4].

First recall that the dumbell graph is the graph E depicted below

v w
f

e g

As discussed in Example 2.7, the essential isotropy in GE is

{(e∞, n, e∞) : n ∈ Z} ∪ {(emfg∞, n, emfg∞) : m ≥ 0, n ∈ Z} ∪ {(g∞, n, g∞) : n ∈ Z}.
The unit space is a clopen subset homeomorphic to N ∪ {∞}, with (e∞, n, e∞) identified
with the point at infinity, and the remainder of Iess is discrete.

In particular, there are just two orbits, namely [e∞] = {e∞}, and [g∞] = E∞ \ {e∞}.
Their orbit closures are {e∞} and E∞ respectively. For x ∈ E∞ and z ∈ T, let π(x,z) be as
in Notation 4.1. Then the primitive ideals of C∗(E) are {ker(π(e∞,z)), ker(π(g∞,z)) : z ∈ T}.
For each of x = e∞ and x = g∞, the group H(x) = c(Iess

x ) is Z, so two elements z, z′ ∈ T
induce the same character of H(x) if and only if they are equal. Hence π : (x, z) →
ker(π(x,z)) is a bijection {e∞, g∞} × T → Prim(C∗(E)).

To describe the topology, first observe that since g∞ is an isolated point in E∞, we
obtain a harmonious family of bisections Bg at g∞ by putting B(g∞,n,g∞) = {(g∞, n, g∞)}.
By Theorem 7.1, the sets {A(Bg, V ) : V ⊆ T is open} are a basis for the topology on the
clopen subset {ker(π(g∞,z) : z ∈ T}, and we deduce that this subset is homeomorphic to
T via ker(π(g∞,z) 7→ z.

Now consider e∞. To lighten notation, we write α(n) := (e∞, n, e∞) for each n ∈ Z.
We define bisections Cα(n) as follows:

Cα(n) :=


Z(en, v) if n > 0

E∞ if n = 0

Z(v, e−n) if n < 0

We claim that C := (Cα(n))n∈Z is a harmonious family of bisections for e∞. Clearly each
Cα(n) is an open bisection. Conditions (i) and (ii) are immediate from the definition of the
Cα(n). Since each Cα(n) is a compact open bisection, it satisfies (v) with Kα(n) = s(Cα(n)).
For conditions (iii) and (iv), it suffices to show that for n ̸= 0, we have Cα(n) ∩ Iess =
{α(n)}. To see this, observe that if x ∈ r(Cα(n)), then (x, n, σn(x)) is the unique element
of Cα(n), so it suffices to fix x ∈ r(Cα(n)) \ {e∞} and show that σn(x) ̸= x. For this, note
that by definition of Cα(n) we have x = enx′ and σn(x) = x′ for some x′. Since x ̸= e∞,
we deduce that there exists k ≥ 0 such that x = en+kfg∞, and hence x′ = ekfg∞ ̸= x.

Now given z ∈ Tk, Theorems 4.2 and 7.1 imply that the sets (U × V ) · (Cess)⊥ ranging
over open neighbourhoods U of e∞ and V of z are the pre-images of a neighbourhood
basis for ker(π(e∞,z)). Since, for any unit y ̸= e∞ in U , we have Cess

y ∩ (GE)y = {y}, we
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see that (Cess)⊥y = {y} × T for y ̸= e∞. Since Cess
e∞ ∩ (GE)e∞ = {α(n) : n ∈ Z}, we have

(Bess)⊥y = {e∞} × {1}. So for any neighbourhood U of e∞ and any neighbourhood V of
z, we have

(U × V ) · (Cess)⊥ =
(
{e∞} × V

)
∪
(
(U \ {e∞})× T

)
.

Since ker(π(x,z)) = ker(π(g∞,z)) for x ∈ E∞ \ {e∞}, it follows that a basic open neighbour-
hood of ker(π(e∞,z)) has the form

{ker(π(e∞,w)) : w ∈ V } ∪ {kerπ(g∞,w) : w ∈ T}.

To summarise, if we put

Pv := {ker(π(g∞,z)) : z ∈ T} and Pw := {ker(π(e∞,z)) : z ∈ T},

then Prim(C∗(E)) = Pv ⊔ Pw; the subset Pw is open; the map ker(π(e∞,z)) 7→ z is a
homeomorphism of Pv in the relative topology onto T; the map ker(π(g∞,z)) 7→ z is a
homeomorphism of Pw in the relative topology onto T; and for any z, the closure of the
point ker(π(g∞,z)) is Pv ∪ ker(π(g∞,z)).

Remark 10.1. As mentioned in [SW16, Example 3.4], this example demonstrates that
the map π : (x, z) 7→ ker(π(x,z)) is not an open map, since the image of W := E∞ ×
{z ∈ T : Re(z) > 0} is not open. Indeed, π is not even a quotient map: π(W ) =
{ker(π(e∞,z)), ker(π(g∞,z)) : Re(z) > 0}, and since π−1(ker(π(g∞,z))) = {ker(π(αg∞,z)) : α ∈
E∗w} it follows that π−1(π(W )) = W ; so π(W ) is a subset of Prim(C∗(E)) that is not
open but whose preimage in E∞ × T is open.

10.2. Graph groupoids. The analysis of the dumbbell graph above extends to arbitrary
row-finite graphs with no sources. Our results here are not new—they are special cases
of the theorems of [HS04], and also appear in [CS16]. We include them to indicate how
our results relate to those papers.

The orbit closures are indexed by the maximal tails T as in [HS04], but for our picture,
we prefer to describe them in terms of orbit closures. The correspondence is as follows.
Given an infinite path x with orbit-closure

[x] = {y : for each m ≥ 0 there exists n ≥ 0 such that r(ym)E∗r(xn) ̸= ∅},

the corresponding maximal tail Tx is the set of vertices v such that vE∗r(xn) ̸= ∅ for
some n. Conversely, given a maximal tail T , enumerate the vertices of T as (v1, v2, . . . ).
Let w1 := v1. Condition (3) for maximal tails ensures that there exists w0

2 such that
w1E

∗w0
2 and v2E

∗w0
2 are nonempty. Condition (2) for maximal tails ensures that there

exists e ∈ w0
2E

1 with s(e) ∈ T . So w2 ∈ T has the property that w1E
∗w2 \ E0 and

v2E
∗w2 are nonempty. Repeating this procedure, we obtain a sequence wn such that

w1 = v1 and wnE
∗wn+1 \E0 and vn+1E

∗wn+1 are both nonempty for all n. For each n, fix
µn ∈ wnE

∗wn+1. Then x = µ1µ2 . . . is an infinite path. We clam that T = Tx. Since each
vnE

∗wn ̸= ∅, we see that vn ∈ Tx for all n, and so T ⊆ Tx. For the reverse containment,
fix v ∈ Tx. Then vE∗r(xi) ̸= ∅ for some i, say α ∈ vE∗r(xi). Since each |µj| ≥ 1 there
exists n such that l := |µ1 . . . µn| ≥ i. So µ1 . . . µn = x1 . . . xixi+1 . . . xl and in particular
αxixi+1 . . . xl ∈ vE∗r(xl+1). So v ∈ T by condition (1) for maximal tails. So Tx ⊆ T as
required.

If x is an infinite path such that every cycle in ETx has an entrance in Tx, then Iess
x =

{x}, so constructing a bisecton family at x is trivial (just take Bx = Z(r(x))). If x is
an infinite path and there is a cycle µ ∈ ETx with no entrance in ETx, then x = αµ∞

for some α, and we may as well take α = r(µ) and x = µ∞, and assume that µ is the
cycle of minimal length such that µ∞ = x (that is, that µ is not a multiple of a shorter
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cycle). In this instance, H(x) = |µ|Z, and Jx = {(µ∞, n|µ|, µ∞) : n ∈ Z}. We write
α(n) := (µ∞, n|µ|, µ∞) for all n. Define

Bα(n) :=


Z(µn, r(µ)) if n > 0

E∞ if n = 0

Z(r(µ), µ−n) if n < 0.
(10.1)

We claim that Bα(n)∩Iess = {α(n)} for all n. To see this, suppose that x ∈ r(Bα(n))\{µ∞}.
Since µ has no entrance in ETx, there exists a minimum i ∈ N such that s(xi) ̸∈ T . We
have x = µnx′ for some x′, and since the vertices on µ belong to t, we have i > n|µ|. Hence
the minimum j ∈ N such that s(x′j) ̸∈ T is j = i−n|µ| ≠ i, and so x′ ̸= x. Since (x, n|µ|, x′)
is the unique element of Bα(n) with range x, we deduce that Bα(n) ∩ I(GE)x = ∅. Since
x ∈ r(Bα(n)) \ {µ∞} was arbitrary, we deduce that Bα(n) ∩ I(GE) = Bα(n) ∩ I(GE)µ∞ =
{α(n)} as claimed. It now follows just as in the dumbbell graph that B = (Bα(n))n∈Z is a
harmonious family of bisections at µ∞.

Let S ⊆ E∞ be a set containing one representative for each orbit closure. We define a
partial order ≤ on S by y ≤ x if and only if y ∈ [x]. Write S = Sa ⊔ Sp where Sa consists
of precisely the elements of S such that every cycle in the associated maximal tail has an
entrance. For each x ∈ Sp we can choose a cycle µ of minimal length with no entrance in
the tail corresponding to x, and may assume that x = µ∞. For x ∈ E∞ and z ∈ T, let
π(x,z) be as in Notation 4.1. Then

Prim(C∗(E)) = {ker(π(x,z)) : x ∈ S},

and that ker(π(x,z)) = ker(π(x,w)) for all z, w if x ∈ Sa, whereas ker(π(µ∞,z)) = ker(π(µ∞,w))

if and only if z|µ| = w|µ| when µ∞ ∈ Sp.
To describe point closures, we argue precisely as in the dumbbell-graph example to

see that for any infinite path y ∈ S and any z, the closure of ker(π(y,z)) is ker(π(y,z)) ∪
{ker(π(y′,w)) : y

′ < y and w ∈ T}.
We can recover [CS16, Theorem 4.1], which describes the closure operation in the hull-

kernel topology as follows. Fix a set Y of pairs (x, z) consisting of an infinite path x
and an element z ∈ T. To describe the corresponding set of pairs (T, z) consisting of
a maximal tail and an element of T in [CS16, Theorem 4.1], for a maximal tail T , we
define Per(T ) to be equal to n if T contains a cycle with no entrance and the minimal
length of such a cycle is n, and to be 0 otherwise. Then the set of pairs appearing
in [CS16, Theorem 4.1] is {(Tx, zPer(Tx)) : (x, z) ∈ Y }. We must show that ker(π(y,w))
belongs to the closure of {ker(π(x,z)) : (x, z) ∈ Y } if and only if Ty ⊆

⋃
(x,z)∈Y Tx and if

Per(Ty) ̸= 0 and the cycle µ with no entrance in Ty has no entrance in
⋃

(x,z)∈Y Tx then
zPer(Ty) ∈ {zPer(Tx) : (x, z) ∈ Y and Tx = Ty}.

First observe that if Ty ̸⊆
⋃

(x,z)∈Y Tx then there is a neighbourhood U of y that does not
intersect

⋃
(x,z)∈Y [x], so for any harmonious family of bisections B at y, the set π

(
(U×Tk)·

(Bess)⊥
)

is a neighbourhood of ker(π(y,w)) that is disjoint from {ker(π(x,z)) : (x, z) ∈ Y }.
So we suppose that Ty ⊆

⋃
(x,z)∈Y Tx and prove that ker(π(y,w)) ∈ {ker(π(x,z)) : (x, z) ∈ Y }

if and only if, if Per(Ty) ̸= 0 and the cycle µ with no entrance in Ty has no entrance in⋃
(x,z)∈Y Tx then zPer(Ty) ∈ {zPer(Tx) : (x, z) ∈ Y and Tx = Ty}.
First suppose that every cycle in Ty has an entrance. We saw in Example 2.8 that in a

graph groupoid, Iess \ E∞ is discrete, so Jy = Iess
y = {y}. Hence a harmonious family of

bisections at y is just an open neighbourhood By of y in E∞. For any open V ⊆ T, the
corresponding neighbourhood A(B, V ) of ker(π(y,w)) is {ker(π(x,z)) : x ∈ U, z ∈ T}, so we
see that ker(π(y,w)) ∈ {ker(π(x,z)) : (x, z) ∈ Y } precisely if U ∩

⋃
(x,z)∈Y [x] is nonempty for
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every neighbourhood U of y; that is, if and only if y is in the closure of
⋃

(x,z)∈Y [x], which
is precisely if Ty ⊆

⋃
(x,z)∈Y Tx.

Now suppose that there is a cycle with no entrance in Ty, and let µ be such a cycle of
minimal length. Then y = αµ∞ for some α and since ker(π(αµ∞,z)) = ker(π(µ∞,z)) for all
z, we may as well assume that y = µ∞. We must consider two cases.

Case 1: suppose that µ has an entrance in
⋃

(x,z)∈Y Tx. Then there is a sequence (xn, zn)
such that each [xn] = [x′n] for some (x′n, zn) ∈ Y , and there is no cycle with an entrance
in each Txn . For the harmonious family of bisections B at y described in (10.1), we then
have HB(xn) = {0} for all n. So for any open U containing y and contained in By and
any open V ⊆ T, we have xn × T eventually contained in (U × V ) · (B(y)ess)⊥. Thus
ker(π(y,w)) ∈ {ker(π(x,z)) : (x, z) ∈ Y } by Corollary 7.6.

Case 2: suppose that µ has no entrance in
⋃

(x,z)∈Y Tx. Let B be the harmonious
family of bisections at y described in (10.1). Since µ has no entrance in any Tx, the sets
Wy := {x : [x] = [y]} and W ′ := {x : r(µ) ̸∈ Tx} satisfy {x : (x, z) ∈ Y } = Wy ⊔W ′.
The set Wy is nonempty because Ty ̸⊆

⋃
(x,z)∈Y Tx. Since y = µ∞, we have π

(
(U × V ) ·

(Bess)⊥
)
∩ {ker(π(x,z)) : x ∈ W ′} = ∅, and so ker(π(y,w)) ∈ {ker(π(x,z)) : (x, z) ∈ Y } if and

only if

ker(π(y,w)) ∈ {ker(π(x,z)) : (x, z) ∈ Y and x ∈ Wy}

= {ker(π(y,z)) : (x, z) ∈ Y and x ∈ Wy}.

The set {ker(π(y,z)) : z ∈ T} is homeomorphic to T via the map induced by z 7→ z|µ|, so

ker(π(y,w)) ∈ {ker(π(y,z)) : (x, z) ∈ Y and x ∈ Wy}

⇐⇒ w|µ| ∈ {z|µ| : (x, z) ∈ Y and Tx = Ty}

as required.

10.3. Crossed products by free abelian groups. The primitive ideals of crossed prod-
ucts of spaces by free abelian group are well understood, see e.g. [Wi07, Theorem 8.39].
Here we describe how to recover their structure from our results.

LetX be a second-countable locally compact Hausdorff space and suppose that T : Zk ↷
X is an action by homeomorphisms of X. The groupoid GT := {(x, n, y) ∈ X ×Zk ×X :
T n(y) = x} is identical to the Deaconu–Renault groupoid of the restriction of T to Nk,
and the map (x, n, y) 7→ (n, y) is an isomorphism of GT onto Zk ×X.

Note that if y ∈ [x], then T nix → y for some sequence (ni)i, so T−niy → x. This
shows that [x] = [y] if and only if y ∈ [x]. Moreover, if T nx = x, then for every m ∈ Zk,
we have T n(Tmx) = TmT nx = Tmx, and so T ny = y for all y ∈ [x]. By continuity, it
follows that T ny = y for all y ∈ [x]. Therefore, Iess(GT ) = I(GT ) which is closed so
Jx = Iess

x = I(GT )x for every unit x ∈ X. In particular, all isotropy is essential isotropy.
For every periodic point x ∈ X and every n ∈ Zk with T nx = x, the sets

Bx
(x,n,x) := {(T ny, n, y) : y ∈ X}

constitute a harmonious family of bisections at x, cf. Lemma 6.6. Hence T admits har-
monious families of bisections.

We write Stab(x) = {n ∈ Zk : T nx = x} for the stabiliser group. For x ∈ X and
z ∈ Tk, let π(x,z) be as in Notation 4.1. The primitive ideals of C∗(GT ) ∼= C0(X) ⋊ Zk

are the kernels {ker(π(x,z)) : x ∈ X, z ∈ Z}, and we have ker(π(x,w)) = ker(π(y,z)) precisely
if y ∈ [x] and wn = zn for all n ∈ Stab(x). A neighbourhood base at ker(π(x,z)) is
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described by Theorems 4.2 and 7.1 as follows. Given open neighbourhoods x ∈ U ⊆ X
and z ∈ V ⊆ Tk, the set

Ax(U, V ) = {ker(π(y,w)) : y ∈ U and wn = zn for all n ∈ Stab(y) ∩ Stab(x)}
is an open neighbourhood of ker(π(x,z)), and the collection

{Ax(U, V ) : x ∈ U ⊆open X and z ∈ V ⊆open Tk}
is a neighbourhood base at x.

By Theorem 9.5, a sequence
(
ker(π(xi,zi))

)
i
of primitive ideals of C0(X)⋊Zk converges

to ker(π(x,z)) if and only if for every subsequence
(
ker(π(xij

,zij )
)
)
j

there is a sequence
(yj, wj)j in X × Tk such that

(1) yj ∈ [xij ] and (wj)
n = znij for all n ∈ Stab(xij) for all j;

(2) yj → x; and
(3) zi converges to z along

(
Stab(xi) ∩ Stab(x)

)
i
in the sense of Definition 9.1.

10.4. Singly generated dynamical systems. This paper was fairly advanced when
Katsura’s work [Kat21] was posted to the arXiv. In it, Katsura completely describes the
ideals of the C∗-algebra of a singly generated dynamical system, which are merely (par-
tially defined) local homeomorphisms on a locally compact Hausdorff space, and this had
been one of our main objectives. Katsura applied the technology of C∗-correspondences
and his adaptation of Cuntz–Pimsner algebras [Kat04] to define the C∗-algebras of topo-
logical graphs. Here we outline how we can recover his results in the setting of globally
defined local homeomorphisms of second-countable locally compact Hausdorff spaces.

Let X be a second-countable locally compact Hausdorff space and suppose that T : N ↷
X is an action by local homeomorphisms. We will use ideas and terminology from our
previous work [BCS22]. Our result [BCS22, Theorem 3.5] shows that the problem of
describing the ideal structure of C∗(GT ) can be reduced to considering nested open
invariant subsets U ⊆ V ⊆ X and describing all ideals J of C∗((GT )|V \U) satisfying
J ∩ C0(V \ U) = {0} and supp(J) = V \ U . We called such ideals purely non-dynamical
with full support.

Since U and V are invariant, so is V \U , and (GT )|V \U is precisely the Deaconu–Renault
groupoid of the restricted action T : N ↷ (V \U). So we may as well replace X with V \U ;
our task is then to describe all of the ideals J of C∗(GT ) such that J ∩C0(X) = {0} and
supp(J) = GT . Note that the open invariant sets in our sense are precisely the T -invariant
sets in the sense of [Kat21, Definition 3.1].

Assume that GT admits a purely non-dynamical ideal J with full support. By [BCS22,
Lemma 5.2] (cf. [AL18, Example 7.6]) the groupoid GT is jointly effective where it is
effective. For each p ∈ N, let

Pp :=
⋃

{V ⊆ X : V is open and T p(y) = y for all y ∈ V },

and let
P =

⋃
p>0

Pp.

Then [BCS22, Lemma 5.1] shows that complement in X of the points at which GT is
effective in the sense of [BCS22, Definition 4.1] is precisely P ′ := {x ∈ X : [x] ∩ P ̸= ∅}.
Hence [BCS22, Theorem 4.12] (cf. [AL18, Theorem 7.12]) implies that J is contained in
the ideal IP ′ . Since supp(J) = GT we deduce that P ′ = X, and so P is a full open subset
of X. Hence by [MRW87, Example 2.7], the inclusion C∗(GT |P ) ↪→ C∗(GT ) defines a
Morita equivalence, and in particular induces a bijection between ideals of C∗(GT |P ) and
C∗(GT ).
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For each Pn, the map T n−1 is an inverse for T |Pn , so T is injective on each Pn and hence
on P . Since T is a local homeomorphism, it follows that it restricts to a homeomorphism
of P . So GT |P is the transformation groupoid associated to the homeomorphism T |P on P ,
so it admits harmonious families of bisections, and its ideals are described by Section 10.3
above.

Remark 10.2. To relate our discussion to Katsura’s work, observe that given an action
T : N ↷ X, the representations πx,z of C∗(GT ) from [SW16], whose kernels coincide
with those of the representations π(x,z) of Notation 4.1 by Remark 3.2, are precisely the
representations described by Katsura in [Kat21, Definition 2.6]. For an ideal I of C∗(GT ),
the set W = {(x, z) : I ̸⊆ ker(π(x,z))} is the complement of the set Y = YI of [Kat21,
Definition 5.1]. So Proposition 5.2 shows that the sandwich sets U and V of [BCS22,
Lemma 3.3] are the sets {x : Yx = ∅} and {x : Yx = T}, respectively, that feature in
Katsura’s definition [Kat21, Definition 5.7].

10.5. Rank-two graphs. A significant goal for this project was to obtain a systematic
approach to calculating the primitive-ideal spaces of the C∗-algebras of k-graphs, and
in particular to explicitly calculate the primitive ideal spaces of C∗-algebras of 2-graphs.
In this section, we show that 2-graph groupoids always admit harmonious families of
bisections, and therefore that Proposition 8.2 and Theorem 9.5 can be used to compute
the ideal spaces of arbitrary 2-graph algebras. This is the first general computation of the
ideal lattices of 2-graph C∗-algebras.

Let Λ be a row-finite rank-two graph with no sources as in [KP00]. The infinite path
space X = Λ∞ is second-countable and locally compact and Hausdorff, and the two
translation operations T = (T ε1 , T ε2) are local homeomorphisms [KP00, Remarks 2.5], so
T : N2 ↷ X is an action of commuting local homeomorphisms. We will show that any
point in the path space admits a harmonious family of bisections.

Fix x ∈ X. If Jx = {x} then B = {Bx} where Bx = X is trivially a harmonious family
of bisections at x. Suppose that Jx is a rank-one subgroup of Z2 with generator h ∈ Z2.
Let Bh ⊆ X × {h} × X be any compact open bisection containing (x, h, x). Then the
association nh 7→ (Bh)

n defines a harmonious family of bisections at x.
Now suppose that Jx is a rank-two subgroup of Z2. By Lemma 6.10, there exists

h1, h2 ∈ c(Jx) ∩ N2 that generate c(Jx). Fix n ∈ N2 such that

T h1+nx = T nx = T h2+nx. (10.2)

We first construct an explicit harmonious family of bisections in the situation where n = 0.
Consider the open sets Ui := Z(x[0,hi]) in X and define open bisections

Bhi
:= Z(Ui, hi, 0, X) (10.3)

which contain (x, hi, x), for i = 1, 2.
We record some technical properties.

Lemma 10.3. The bisections defined in (10.3) commute, and they satisfy

Bh2B
−1
h1

⊆ B−1
h1
Bh2 , (10.4)

Bh1B
−1
h2

⊆ B−1
h2
Bh1 . (10.5)

Proof. We first verify that the Bhi
commute. Take composable elements (y1, h1, y2) ∈ Bh1

and (y2, h2, y3) ∈ Bh2 so that

(y1, h1 + h2, y3) = (y1, h1, y2)(y2, h2, y3) ∈ Bh1Bh2 .



IDEAL STRUCTURE OF C∗-ALGEBRAS OF COMMUTING LOCAL HOMEOMORPHISMS 41

This means that T h1y1 = y2 ∈ U1 and y3 = T h2y2 = T h1+h2y1. In particular, y1 ∈
Z(x[0,h1+h2]) so by the factorisation property we have T h2y1 ∈ U1. It now follows that

(y1, h1 + h2, y3) = (y1, h2, T
h2y1)(T

h2y1, h1, T
h1+h2y1) ∈ Bh2Bh1

showing that Bh1Bh2 ⊆ Bh2Bh1 . A similar argument shows that Bh2Bh1 ⊆ Bh1Bh2 .
Next we verify Equation (10.4); a similar argument applies to Equation (10.5). Take

composable elements (y1, h1, h2) ∈ Bh1 and (y2,−h2, y3) ∈ Bh2 so that

(y1, h1 − h2, y3) = (y1, h1, h2)(y2,−h2, y3) ∈ Bh1B
−1
h2
.

In particular, y1 = x[0,h1]y2 and y3 = x[0,h2]y2. Consider z := x[0,h1+h2]y2 and observe that
(y1,−h2, z) ∈ Bh2

−1 and (z, h1, y3) ∈ Bh1 so we have

(y1, h1 − h2, y3) = (y1,−h2, z)(z, h1, y3) ∈ B−1
h2
Bh1 ,

giving Bh1B
−1
h2

⊆ B−1
h2
Bh1 . □

Corollary 10.4. Let Bh1 and Bh2 be as in (10.3). For h ∈ Jx, write h = m1(h)h1 +
m2(h)h2 with m1(h),m2(h) ∈ Z. Define

Bh :=

{
B

m1(h)
h1

B
m2(h)
h2

if m1(h) ≤ m2

B
m2(h)
h2

B
m1(h)
h1

if m2(h) < m1,
(10.6)

with the convention that B0
hi

= Λ∞. Then B(x,h,x) := Bh defines a harmonious family of
bisections at x.

Proof. This follows immediately from Lemma 10.3 and Lemma 6.8. □

Remark 10.5. The argument above breaks into two parts corresponding to the situation
where Jx is singly generated and where Jx is generated as a group by its intersection with
c−1(Nk). The point of restricting to 2-graphs is that these two cases cover all possibilities
thanks to Lemma 6.10. In general, the arguments presented above could be run verbatim
to prove the following statement: Let Λ be a k-graph and suppose that for each x ∈ Λ∞,
the group Jx either has rank 1, or is generated by its intersection with c−1(Nk). Then GΛ

admits harmonious families of bisections. In particular, if rank(Jx) ∈ {0, 1, k} for all x,
then GΛ admits harmonious families of bisections.

10.6. A countable subshift. The following example is an adaptation of [AL18, Example
7.9]. Ara and Lolk show that this example is not relatively strongly topologically free
(cf. [AL18, Definition 7.4]) and hence not amenable to their techniques for studying ideal
structure. This example does however admit harmonious families of bisections.

For n ∈ N, define xn, yn : N2 → {0, 1} by

xn(a, b) =

{
1 if b ≤ n,

0 if b > n
and yn(a, b) =

{
1 if a ≤ n,

0 if a > n

for all (a, b) ∈ N2. Let 0̄, 1̄ : N2 → {0, 1} be constantly 0 and 1, respectively. Then (xn)n
and (yn)n converge to 1̄ as n → ∞, and X = {0̄, 1̄, xn, yn : n ∈ N} is a compact and
Hausdorff subspace of {0, 1}N2 . The coordinate translations on {0, 1}N2 restrict to an
action T : N2 ↷ X given by

T (k,l)x(a, b) = x(a+ k, b+ l),

for all (k, l) ∈ N2, (a, b) ∈ N2, and x ∈ X. Note that 0̄ and 1̄ are fixed points of T , and
that T (1,0)(xn+1) = xn and T (1,0)yn = yn, and T (0,1)xn = xn and T (0,1)yn+1 = gn, for all
n ∈ N.
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The only point in X that is not isolated is 1̄. The set

U(1,0) = {0̄, 1̄, xn+1, yn : n ∈ N}

is an open neighborhood of 1̄ in X and T (1,0) restricts to a homeomorphism on U(1,0);
similarly,

U(0,1) = {0̄, 1̄, xn, yn+1 : n ∈ N}
is an open neighborhood of 1̄ in X, and T (0,1) restricts to a homeomorphism on U(0,1).
This shows that T : N2 ↷ X is an action by local homeomorphisms.

We will now verify that T admits harmonious families of bisections. Every isolated
point admits a harmonious family of bisections so we only need to construct one for 1̄.
The sets

B(1,0) = Z(U(1,0), (1, 0), (0, 0), X) and B(0,1) = Z(U(0,1), (0, 1), (0, 0), X)

are homogeneous compact open bisections that contain (1̄, (1, 0), 1̄) and (1̄, (0, 1), 1̄), re-
spectively. In fact, the bisections satisfy the conditions of Lemma 6.8, so 1̄ admits a
harmonious family of bisections.

Remark 10.6. While we have proved that the preceding example admits harmonious
families of bisections by constructing them by hand, we could also establish this by proving
that it is conjugate to the shift space of a 2-graph as follows, and then using the general
results of Section 10.5 above.

Consider the 2-coloured graph

v w

e

a

f

b

g

c

By [KP00, Section 6], there is a unique 2-graph Λ with this skeleton and satisfying the
factorisation rules

ae = ea, af = fc, bg = eb, and cg = gc.

Writing TΛ : N2 ↷ Λ∞ for the shift action, it is routine to check that the formulas

θ(xv) = 1, θ(anbxw) = yn+1, θ(enfxw) = xn+1, and θ(xw) = 0,

define a conjugacy θ from (Λ∞, TΛ) to (X,T ).

11. Ideals of higher-rank graphs

In this section, we present a catalogue of all ideals in the C∗-algebra of a higher-rank
graph Λ whose groupoid admits harmonious families of bisections, in terms of open subsets
D of Λ0 × Tk. This extends the catalogue of ideals that are gauge-equivariant. Although
the condition that characterises which subsets D ⊆ Λ0 × Tk correspond to ideals is quite
technical, in practice the description is usable, as we show by example at the end of the
section.

Our strategy is as follows. We begin by describing the collection AΛ of subsets of
Λ∞ × Tk that correspond to ideals of C∗(Λ) via Corollary 7.5. We then describe maps δ
and α, the first of which carries subsets of Λ∞ ×Tk to subsets of Λ0 ×Tk and the second
of which takes subsets of Λ0×Tk to subsets of Λ∞×Tk. We show that α◦δ is the identity
map on AΛ, and deduce that the ideals of C∗(Λ) are indexed by the elements of δ(AΛ).
We then identify exactly which subsets of Λ0 × Tk belong to δ(AΛ).
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Recall from the beginning of Section 4 that if B = (Bγ)γ∈Jx is a harmonious family of
bisections based at x ∈ Λ∞, then Bess denotes its intersection with the essential isotropy
of GΛ, and that (Bess)⊥ is the group bundle {(y, z) ∈ Bx ×Tk : zc(γ) = 1 for all γ ∈ Bess

y },
which is a sub-bundle of the group bundle Bx × Tk.

Notation 11.1. Let Λ be a row-finite higher-rank graph with no sources whose groupoid
GΛ admits harmonious families of bisections. We write AΛ for the collection of all subsets
A ⊆ Λ∞ × Tk such that

(A1) if (x, z) ∈ A, and (x′, z′) ∈ X × Tk satisfy [x] = [x′], and (zz′)c(γ) = 1 for all
γ ∈ Iess

x , then (x′, z′) ∈ A; and
(A2) for each (x, z) ∈ A, then there exist a harmonious family of bisections B = (Bg)g∈Jx

based at x and an open neighbourhood V ⊆ Tk of z such that (Bx×V )·(Bess)⊥ ⊆ A.

It follows from Corollary 7.5 applied to the k-graph groupoid GΛ associated to the shift
action T : Nk ↷ Λ∞ of [KP00] that the map π of Notation 4.1 is a bijection from AΛ to
the set of open subsets of Prim(C∗(GΛ)).

For the following, recall that if x ∈ Λ∞ and n ∈ Nk, then x(n) denotes the vertex
x(n) = r(T n(x)) ∈ Λ0

Lemma 11.2. Let Λ be a row-finite higher-rank graph with no sources whose groupoid
GΛ admits harmonious families of bisections. Suppose that A ∈ AΛ. For x ∈ Λ∞, n ∈ Nk

and z ∈ Tk we have (x, z) ∈ A if and only if (T n(x), z) ∈ A. If (x, z) ∈ A then there exist
n ∈ Nk and an open neighbourhood V ⊆ Tk of z such that Z(x(n))× V ⊆ A.

Proof. For x ∈ Λ∞, we have [x] = [T n(x)]. Hence (A1) implies that (x, z) ∈ A if and only
if (T n(x), z) ∈ A.

Suppose that (x, z) ∈ A. Since π is continuous by Corollary 4.4, the set A ⊆ X × Tk

is open. So there exist n ∈ Nk and an open neighbourhood V ⊆ Tk of z such that
Z(x(0, n)) × V ⊆ A. Since [x(0, n)y] = [y] for all y ∈ Z(v), it follows from (A2) that
Z(x(n))× V ⊆ A. □

Lemma 11.3. Let Λ be a row-finite higher-rank graph with no sources whose groupoid
GΛ admits harmonious families of bisections. Given a subset A ⊆ Λ∞ × Tk, define

δ(A) := {(v, z) ∈ Λ0 × Tk : Z(v)× {z} ⊆ A}.
Given a subset D ⊆ Λ0 × Tk, define

α(D) := {(x, z) ∈ Λ∞ × Tk : (x(n), z) ∈ D for some n ∈ Nk}.
Then α(δ(A)) = A for all A ∈ AΛ.

Proof. Fix (x, z) ∈ A. By Lemma 11.2, there exist n ∈ Nk and an open neighbourhood V
of z such that Z(x(n))×V ⊆ A. We then have (x(n), z) ∈ x(n)×V ⊆ δ(A). By definition
of α, we then have (y, z) ∈ α(δ(A)) whenever y ∈ Λ∞ satisfies x(n)Λy(m) ̸= ∅ for some
m ∈ Nk. Taking m = n and y = x we see that (x, z) ∈ α(δ(A)). That is A ⊆ α(δ(A)).

For the reverse containment, fix (x, z) ∈ α(δ(A)). Then there exists n ∈ Nk such that
(x(n), z) ∈ δ(A). Hence Z(x(n))×{z} ⊆ A. In particular, (σn(x), z) ∈ A. Since [σn(x)] =
[x] and since A satisfies (A1), we deduce that (x, z) ∈ A. Hence α(δ(A)) ⊆ A. □

To describe the lattice of ideals of C∗(Λ), it therefore suffices to describe the range of
the map δ : AΛ → P(Λ0 × Tk). We start with some elementary necessary conditions for
membership of δ(AΛ).

Lemma 11.4. Let Λ be a row-finite higher-rank graph with no sources whose groupoid
GΛ admits harmonious families of bisections. If A ∈ AΛ, then

(1) for λ ∈ Λ, if (r(λ), z) ∈ δ(A), then (s(λ), z) ∈ δ(A);
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(2) for n ∈ Nk, v ∈ Λ0 and z ∈ Tk, if (s(λ), z) ∈ δ(A) for all λ ∈ vΛn, then
(v, z) ∈ δ(A); and

(3) for each v ∈ Λ0, the set {z ∈ Tk : (v, z) ∈ δ(A)} is open.

Proof. (1) Suppose that (r(λ), z) ∈ δ(A). Then Z(λ)× {z} ⊆ Z(r(λ))× {z} ⊆ A. Since
[σd(λ)(x)] = [x] for all x ∈ Λ∞, and since Z(s(λ)) = σd(λ)(Z(λ)), condition (A1) implies
that Z(s(λ))× {z} ⊆ A, and hence (s(λ), z) ∈ δ(A).

(2) Fix n ∈ Nk, v ∈ Λ0 and z ∈ Tk and suppose that (s(λ), z) ∈ δ(A) for all λ ∈ vΛn.
Then Z(s(λ)) × {z} ⊆ A for all λ ∈ vΛn. For each λ ∈ vΛn and x ∈ Z(s(λ)), we have
[λx] = [x]. Hence condition (A1) implies that

⋃
λ∈vΛn(Z(λ) × {z}) = {(λx, z) : λ ∈

Λn, x ∈ Z(s(λ))} ⊆ A. Since Z(v) =
⋃

λ∈vΛn Z(λ), it follows that Z(v) × {z} ⊆ A and
hence (v, z) ∈ δ(A).

(3) Fix v ∈ Λ0 and z ∈ Tk such that (v, z) ∈ δ(A). We must show that there exists
an open neighbourhood V ⊆ Tk of z such that {v} × V ⊆ δ(A). Since (v, z) ∈ δ(A),
we have Z(v) × {z} ⊆ A. For each x ∈ Z(v), Lemma 11.2 gives nx ∈ Nk and an open
neighbourhood Vx ⊆ Tk of z such that Z(x(0, nx)) × Vx ⊆ A. The sets Z(x(0, nx))
constitute an open cover of Z(v), which is compact. So there is a finite F ⊆ Z(v) such
that

⋃
x∈F Z(x(0, nx)) = Z(v). Let V =

⋂
x∈F Vx. This is an open neighbourhood around

z, and Z(v)× V =
⋃

x∈F (Z(x(0, nx))× V ) ⊆ A. Thus {v} × V ⊆ δ(A). □

Lemma 11.5. Let Λ be a row-finite higher-rank graph with no sources whose groupoid GΛ

admits harmonious families of bisections. Let D be subset of Λ0×Tk. Then D ⊆ δ(α(D)).
If D satisfies conditions (1) and (2) of Lemma 11.4, then D = δ(α(D)).

Proof. For the first statement, fix (v, z) ∈ D. For each x ∈ Z(v), we have (x(0), z) ∈ D
and so by definition of α(D) we have Z(v)× {z} ⊆ α(D). So by definition of δ, we have
(v, z) ∈ δ(α(D)).

For the second statement, suppose thatD satisfies conditions (1) and (2) of Lemma 11.4.
We must show that δ(α(D)) ⊆ D. Fix (v, z) ∈ δ(α(D)). Then Z(v) × {z} ⊆ α(D),
and so for each x ∈ Z(v), there exists nx ∈ Nk such that (x(nx), z) ∈ D. The sets
Z(x(0, nx))x∈Z(v) are an open cover of Z(v) in Λ∞, and since Z(v) is compact, it follows
that there is a finite subset F ⊆ Z(v) such that Z(v) =

⋃
x∈F Z(x(0, nx)). Let n =∨

x∈F nx. For each x ∈ F we have Z(x(0, nx)) =
⋃

τ∈x(nx)Λn−nx Z(x(0, nx)τ). Since each
x(0, nx)τ belongs to vΛn and since the sets Z(η), η ∈ Λn are mutually disjoint nonempty
subsets of Z(v), we deduce that {x(0, nx)τ : x ∈ F, τ ∈ x(nx)Λ

n−nx} = vΛn. For x ∈ F
and τ ∈ x(nx)Λ

n−nx , the fact that D satisfies Lemma 11.4(1) implies that (s(τ), z) ∈ D,
so {(s(η), z) : η ∈ vΛn} ⊆ D. Since D satisfies Lemma 11.4(2), we obtain (v, z) ∈ D. □

We now characterise the sets D ⊆ Λ0 × Tk that have the form δ(A) for some A ∈ AΛ.
The condition is technical, but we will demonstrate by example that it can be checked in
practice.

Throughout what follows, given a harmonious family of bisections B = (Bγ)γ∈Jx based
at x ∈ Λ∞, and given y ∈ Bx, we write (Bess

y )⊥ for the subgroup

(Bess
y )⊥ := {z ∈ Tk : zc(γ) = 1 for all γ ∈ Bess

y }.
Thus, the fibre (Bess)⊥y of (Bess)⊥ over the point y is {y} × (Bess

y )⊥.

Proposition 11.6. Let Λ be a row-finite higher-rank graph with no sources whose groupoid
GΛ admits harmonious families of bisections. A set D ⊆ Λ0 × Tk has the form δ(A) for
some A ⊆ Λ∞ × Tk satisfying (A1) and (A2) if and only if D satisfies (1) and (2) of
Lemma 11.4 and for every (v, z) ∈ D and every x ∈ Z(v), there exist a bisection family
B = (Bγ)γ∈Jx based at x and an open neighbourhood V of z in Tk such that for every
y ∈ Bx there exists n ∈ Nk such that {y(n)} × V (Bess

y )⊥ ⊆ D.
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In particular, α is a bijection from the collection of such sets D to AΛ.

Proof. If D = δ(A), then D satisfies (1)–(2) by Lemma 11.4. Fix (v, z) ∈ D. Since
D = δ(A) we first observe that Z(v)× {z} ⊆ A.

Fix x ∈ Z(v). By condition (A2), there exist a harmonious family of bisections B =
(Bγ)γ∈Jx based at x and an open neighbourhood V0 ⊆ Tk of z such that (Bx×V0)·(Bess)⊥ ⊆
A. Since Λ∞ is totally disconnected, we can fix a compact open neighbourhood C of
x contained in Bx and apply Lemma 6.5 to obtain a harmonious family of bisections
{CBγC : γ ∈ Jx} with CBxC compact open. So we can assume without loss of generality
that Bx is compact open. Let K ⊆ V0 be a compact neighbourhood of z, and let V be
the interior of K. We claim that B and V have the desired properties.

To see this, fix y ∈ Bx. We must find n ∈ Nk such that {y(n)} × V (Bess
y )⊥ ⊆ D. Since

y ∈ Bx, we have
{y} ×K(Bess

y )⊥ ⊆ {y} × V0(Bess
y )⊥ ⊆ A.

By Lemma 11.2, for each w ∈ K(Bess
y )⊥, there exists nw ∈ Nk and a neighbourhood Uw of

w such that Z(y(nw)) × Uw ⊆ A. Since K(Bess
y )⊥ is compact, the open cover {Uw : w ∈

K(Bess
y )⊥} admits a finite subcover {Uw : w ∈ F}. Since each Z(y(nw)) × Uw ⊆ A, each

{y(nw)} ×Uw ⊆ D. Let n =
∨

w∈F nw. Since D satisfies condition (1) of Lemma 11.4, we
have {y(n)} × Uw ⊆ D for all w ∈ F . Hence,

{y(n)} × V (Bess
y )⊥ ⊆ {y(n)} ×K(Bess

y )⊥

⊆ {y(n)} ×
(⋃

w∈F Uw

)
=

⋃
w∈F ({y(n)} × Uw) ⊆ D.

Now suppose that D satisfies (1)–(2) of Lemma 11.4 and that for every (v, z) ∈ D and
every x ∈ Z(v), there exist a harmonious family of bisections B = (Bγ)γ∈Jx based at x
and an open neighbourhood V of z in Tk such that for every y ∈ Bx there exists n ∈ Nk

such that {y(n)} × V (Bess
y )⊥ ⊆ D.

By Lemma 11.5, we have D = δ(α(D)), so we just need to show that α(D) belongs
to AΛ. For condition (A1), suppose that (x, z) ∈ α(D) and that [x′] = [x] and that z
and z′ determine the same character of c(Iess

x′ ). Since (x, z) ∈ α(D) there exists n ∈ Nk

such that (x(n), z) ∈ D. We have T n(x) ∈ [x] ⊆ [x] = [x′]. Hence [x′] ∩ Z(x(n)) ̸= ∅.
Since Z(x(n)) is open, it follows that [x′]∩Z(x(n)) ̸= ∅. Hence there exists m ∈ Nk such
that x(n)Λx′(m) ̸= ∅. Since (x(n), z) ∈ D, Lemma 11.4(1) ensures that (x′(m), z) ∈ D.
Hence (x′, z) ∈ α(D). By hypothesis on D, there exist a harmonious family of bisections
B based at x′, a neighbourhood V of z and p ∈ Nk such that {x′(p)} × V (Bess

x′ )⊥ ⊆ D.
Since D satisfies condition (1) of Lemma 11.4, we then have {x′(p∨m)}×V (Bess

x′ )⊥ ⊆ D,
so by replacing p with p ∨m we can assume that p ≥ m. By definition we have Bess

x′ =⋃
B ∩ Iess

x′ ⊆ Iess
x′ , so (Bess

x′ )⊥ ⊇ (Iess
x′ )⊥. Since z and z′ determine the same characters of

c(Iess
x′ ), we therefore have z′ ∈ zc(Iess

x′ )⊥ ⊆ V (Bess
x′ )⊥, and hence (x′(p), z′) ∈ D. Therefore,

(x′, z′) ∈ α(D).
For (A2), fix (x, z) ∈ α(D). By hypothesis, there exist a harmonious family of bisections

B based at x, and a neighbourhood V of z such that for every y ∈ Bx there exists ny ∈ Nk

such that {y(ny)} × V (Bess
y )⊥ ⊆ D. In particular, for y ∈ Bx, we have(

(Bx × V ) · (Bess)⊥
)
y
= {y} × V (Bess

y )⊥ ⊆ α(D).

That is, (Bx × V ) · (Bess)⊥ ⊆ α(D).
The final statement follows from Lemmas 11.3 and 11.5. □

The following complete description of the ideal structure of the higher-rank graph C∗-
algebra whose groupoid GΛ admits harmonious families of bisections now follows directly
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from Corollary 7.5 and Proposition 11.6. We identify C∗(Λ) with the groupoid C∗-algebra
C∗(GΛ).

Corollary 11.7. Let Λ be a row-finite higher-rank graph with no sources whose groupoid
GΛ admits harmonious families of bisections. Let DΛ denote the collection of subsets D
of Λ0 × Tk such that

(D1) for λ ∈ Λ, if (r(λ), z) ∈ δ(A), then (s(λ), z) ∈ δ(A);
(D2) for n ∈ Nk, v ∈ Λ0 and z ∈ Tk, if s(vΛn)× {z} ⊆ δ(A) then (v, z) ∈ δ(A); and
(D3) for every (v, z) ∈ D and every x ∈ Z(v), there exist a bisection family B =

(Bγ)γ∈Jx and an open neighbourhood V of z in Tk such that for every y ∈ Bx

there exists n ∈ Nk such that {y(n)} × V (Bess
y )⊥ ⊆ D.

Let α : DΛ → AΛ be the restriction of the map of Lemma 11.3, and for (x, z) ∈ Λ∞ × Tk,
let π(x,z) be the representation C∗(GΛ) of Remark 3.2. Then

D 7→
⋂

(x,z)∈(Λ∞×Tk)\α(D)

ker(π(x,z))

is a bijection between DΛ and the collection of ideals of C∗(Λ).

Remark 11.8. The map from DΛ to the set of ideals of C∗(Λ) described above generalises
the well-known map [RSY03, Theorem 5.2] from saturated hereditary subsets of Λ0 to
gauge-invariant ideals of C∗(Λ). Specifically, if D ∈ DΛ and I is the corresponding ideal
of C∗(Λ), then I is gauge-invariant if and only if D = H × Tk for some subset H ⊆ Λ0,
and then (D1) and (D2) say precisely that H is saturated and hereditary; specifically,
it is the saturated hereditary set {v ∈ Λ0 : pv ∈ I}. Observe that if the complement
of every saturated hereditary subgraph of Λ satisfies the aperiodicity condition (B) of
[RSY03], then Iess(GΛ) is just the unit space, so (D3) says that DΛ consists of sets of the
form H × Tk for H ⊆ Λ0, and (D1) and (D2) say that these sets H are saturated and
hereditary; so we recover [RSY03, Theorem 5.3].

Example 11.9. We illustrate our results by applying them to the 2-graph Λ with the
following skeleton.

v1 v2 v3 v4 . . .

w1 w2 w3 w4 . . .

x1 x2 x3 x4 . . .y1y2y3y4. . .

This example appeared in [aHNS21] as an illustration of a 2-graph whose C∗-algebra is
stably finite. We have chosen it as an illustration because it has a reasonably complex
essential-isotropy structure and also a reasonably complex ideal structure that cannot
be described using existing results (for example, it is not a pullback of a 1-graph, nor a
product of 1-graphs).

We describe DΛ. It is convenient here to regard an element of DΛ here as a function
D : Λ0 → Open(T2) from the vertices of Λ to the open subsets of T2; a subset D ⊆ Λ0×T2

is identified with the function v 7→ D(v) := {z ∈ T2 : (v, z) ∈ D}.
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For D ∈ DΛ, condition (D1) implies that:
• D(vi) ⊆ D(vi+1) for all i;
• D(vi) ⊆ D(wi) for all i;
• D(xi) ⊆ D(xi+1) for all i;
• D(yi) ⊆ D(yi+1) for all i; and
•
⋃

j D(vj) ⊆ D(x1) ∩D(y1).

The consequences of condition (D2) are as follows.
• Applied with v = xi and n = (1, 0), condition (D2) forces D(xi+1) ⊆ D(xi) for all
i; combining this with the consequenes of (D1) above implies that D is constant
on {xi : i ∈ N}.

• Applied with v = yi and n = (0, 1), condition (D2) forces D(yi+1) ⊆ D(yi) for all
i; combining this with the consequenes of (D1) above implies that D is constant
on {yi : i ∈ N}.

• Applied with v = vi and n = (j, 0), condition (D2) implies that D(vi+j) ∩(⋂
0≤l<j D(wi+l)) ∩D(x1) ⊆ D(vi) for all i; since each D(wi+l) contains D(vi+l),

and since theD(vi) are increasing and contained inD(x1), this reduces toD(vi+1)∩
D(wi) ⊆ D(vi).

To understand the consequences of (D3), we must first understand the harmonious
families of bisections in this 2-graph groupoid. To do this, first note that each xiΛ

∞,
each yiΛ

∞ and each wiΛ
∞ is a singleton; we will write ζ(u) for the unique element of

uΛ∞ for each u ∈ {xi, yi, zi : i ∈ N}. Since each uΛ∞ is clopen in Λ∞, each ζ(u) is
an isolated point. For a given vertex u and infinite path η ∈ uΛ∞, if B and B′ are
harmonious bisection families based at η such that Bα ⊆ B′

α for all α, then the collection
of functions D that satisfy (D3) with respect to B is larger than the collection that
satisfy (D3) with respect to B′. Combining this with Lemma 6.5 applied with C = Z(u)
we see that it suffices to consider harmonious families of bisections Bu based at each ζ(u)
such that Bu

ζ(u) ⊆ uΛ∞ = {ζ(u)}. For each u, there is only one such harmonious family
of bisections, namely Bu = {Bu

α : α ∈ Jζ(u)} given by Bu
α := {α} for each α ∈ Jζ(u) =

{(ζ(u), p− q, ζ(u)) : T p(ζ(u)) = T q(ζ(u))}. In particular,

Bxi = {(ζ(xi), (0, l), ζ(xi)) : l ∈ Z},
Byi = {(ζ(xi), (l, 0), ζ(xi)) : l ∈ Z},
Bwi = {(ζ(xi), (l1, l2), ζ(xi)) : (l1, l2) ∈ Z2}.

So (D3) implies that
• each D(xi) is invariant under multiplication by T× {1} ⊆ T2, and
• each D(yi) is invariant under multiplication by {1} × T ⊆ T2.

Since each ((Bwi)ess)⊥ζ(wi)
= {1}, condition (D3) imposes no condition on the D(wi).

It remains to analyse the D(vi). For this, let S := {vi : i ∈ N}. Then ΛS is a
sub-k-graph of Λ. There are infinitely many infinite paths in each viΛ

∞, but all but
one of these has the form µζ(u) for some finite path u and some u ∈ {xi, yi, zi : i ∈
N}. The one remaining infinite path is the unique infinite path ζ(vi) in viΛS. Each
[ζ(vi)] = {ζ(vj) : j ∈ N} = (ΛS)∞. We have T n(ζ(vi)) = Tm(ζ(vi)) if and only if
m− n ∈ Z(1,−1) ⊆ Z2. So (D3) implies that there exists l ∈ N such that D(vj) is closed
under multiplication by Z(1,−1)⊥ = {(w,w) : w ∈ T} ⊆ Tk. Since we already established
that D(vj) ⊆ D(xj) = D(x1) and since D(x1) is also closed under multiplication by
T×{1}, we deduce that if any D(vj) ̸= ∅ then D(xi) = T2 for all i. Similar considerations
show that if any D(vj) ̸= ∅ then each D(yi) = T2.
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We are now in a position to describe all of DΛ. A function D : Λ0 → Open(T2) belongs
to DΛ if and only if either:

• D(vi) = ∅ for all i; D is constant on {xi : i ∈ N} and D(x1) is invariant under
T× {1}; and D is constant on {yi : i ∈ N} and D(y1) is invariant under {1} × T;
or

• D(xi) = D(yi) = T2 for all i; each D(vi) is invariant under {(w,w) : w ∈ T} and
each D(vi) ⊆ D(vi+1); each D(vi) ⊆ D(wi); and each D(wi) ∩D(vi+1) ⊆ D(vi).

Example 11.10. To illustrate how aperiodicity affects the ideal structure, suppose that
we modify Example 11.9 as follows. Fix disjoint subsets S0, S1 ⊆ N. For each n ∈ S :=
S0 ∪ S1, add an additional red loop and an additional blue loop at wn (in the picture
below, w3 ∈ S while w1, w2, w4 ̸∈ S).

For n ∈ S there are now multiple red-blue loops at wn and multiple red-blue paths from
wn to vn, so we must specify factorisation rules (see [HRSW13, Theorems 4.4 and 4.5]).
For each n ∈ S, denote the blue loops at wn by en1 , en2 , the red loops by fn

1 , f
n
2 , the blue

edge from wn to vn by an and the red edge from wn to vn by bn. For all n ∈ S, impose
the factorisation rules anfn

i = bne
n
i on red-blue paths from wn to vn. For blue-red loops

at wn, impose factorisation rules depending on whether n ∈ S0 or n ∈ S1:

eni f
n
j =

{
fn
j e

n
i if n ∈ S0.

fn
i e

n
j if n ∈ S1

v1 v2 v3 v4 . . .

w1 w2 w3 w4 . . .

x1 x2 x3 x4 . . .y1y2y3y4. . .

a3 b3

e31, e
3
2 f3

1 , f
3
2

Let Γ be the 2-graph with this skeleton and these factorisation rules. For n ∈ S0, the
subgraph wnΓwn is a cartesian product of two copies of the 1-graph B2 that has one vertex
and two loops. So the reduction of GΓ to Z(wn) for n ∈ S0 is the cartesian product of two
copies of the standard groupoid H2 for the Cuntz algebra O2, which has trivial essential
isotropy. Thus, for n ∈ S0, and x ∈ Z(wn), we have Jx = {0}.

For n ∈ S1, the subgraph wnΓwn is the pullback of the same 1-graph B2 by the functor
m 7→ m1 + m2 from N2 to N. So by [KP00, Proposition 2.10], the reduction of GΓ to
Z(wn) for n ∈ S1 is isomorphic to the cartesian product of H2 with the group Z. For
n ∈ S1, and x ∈ Z(wn), we have Jx = {(x, (m,−m), x) : m ∈ Z}.

The set DΓ differs from DΛ in Example 11.9 only in that if D ∈ DΓ, then for n ∈ S0,
we have D(wn) ∈ {∅,T2}, and for n ∈ S1, the set D(wn) is invariant for multiplication
by Z(1,−1)⊥ = {(w,w) : w ∈ T} ⊆ T2. Aside from that, the constraints on D are as in
Example 11.9. Writing S◦

0 = {n ∈ S0 : D(wn) = ∅} and S•
0 = {n ∈ S0 : D(wn) = T2}, if⋃

D(vi) ̸= ∅ so that D(x1) = D(y1) = T2, we have D(vn) = D(vn+1) for n ∈ S•
0 .



IDEAL STRUCTURE OF C∗-ALGEBRAS OF COMMUTING LOCAL HOMEOMORPHISMS 49

References

[A-D97] C. Anantharaman-Delaroche, Purely infinite C∗-algebras arising from dynamical systems, Bull.
Soc. Math. France 125 (1997), 199–225.

[AL18] P. Ara and M. Lolk, Convex subshifts, separated Bratteli diagrams, and ideal structure of tame
separated graph algebras, Adv. Math. 328 (2018), 367–435.

[BHRS02] T. Bates, J.H. Hong, I. Raeburn and W. Szymański, The ideal structure of the C∗-algebras of
infinite graphs, Illinois J. Math. 46 (2002), 1159–1176.

[BL20] C. Bönicke and K. Li, Ideal structure and pure infiniteness of ample groupoid C∗-algebras, Ergodic
Theory Dynam. Systems 40 (2020), 34–63.

[BS76] J.R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174–182.
[BCS22] K.A. Brix, T.M. Carlsen and A. Sims, Some results regarding the ideal structure of C∗-algebras

of étale groupoids, preprint 2022 (arXiv:2211.06126 [math.OA]).
[BCFS14] J.H. Brown, L.O. Clark, C. Farthing, and A. Sims, Simplicity of algebras associated to étale

groupoids, Semigroup Forum 88 (2014), 433–452.
[CKSS14] T.M. Carlsen, S. Kang, J. Shotwell and A. Sims The primitive ideals of the Cuntz–Krieger

algebra of a row-finite higher-rank graph with no sources, J. Funct. Anal 266 (2014), 2570–2589.
[CLSV11] T.M. Carlsen, N. Larsen, A. Sims and S.T. Vittadello, Co-universal algebras associated to

product systems, and gauge-invariant uniqueness theorems, Proc. London Math. Soc. 103 (2011),
563–600.

[CS16] T.M. Carlsen, and A. Sims, On Hong and Szymanski’s description of the primitive-ideal space of
a graph algebra, in Operator algebras and Applications, Carlsen, Larsen, Neshveyev and Skau (eds),
The Abel Symposium 2015, Springer 2016, 109–126.

[Cu81] J. Cuntz, A class of C∗-algebras and topological Markov chains. II. Reducible chains and the
Ext-functor for C∗-algebras, Invent. Math. 63 (1981), 25–40.

[CK80] J. Cuntz and W. Krieger, A class of C∗-algebras and topological Markov chains, Invent. Math.
56 (1980), 251–268.

[Dea95] V. Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995),
1779–1786.

[DD63] J. Dixmier and A. Douady, Champs continus d’espaces hilbertiens et de C∗-algèbres, Bull. Soc.
Math. France 91 (1963), 227–284.

[Ell76] G.A. Elliott, On the classification of inductive limits of semisimple finite-dimensional algebras, J.
Algebra 38 (1976), 29–44.

[Ell93] G.A. Elliott, On the classification of C∗-algebras of real rank zero, J. reine angew. Math. 443
(1993), 179–219.

[Exe11] R. Exel, Non-Hausdorff étale groupoids, Proc. Amer. Math. Soc. 139 (2011), 897–907.
[ER07] R. Exel and J.N. Renault, Semigroups of local homeomorphisms and interaction groups, Ergodic

Theory Dynam. Systems 27 (2007), 1737–1771.
[Fol99] G.B. Folland, Real analysis Modern techniques and their applications. Second edition. Pure and

Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley and Sons, Inc.,
New York, 1999. xvi+386 pp. ISBN: 0–471–31716–0.

[Fra] M.D. Francis, Question #2375956, Math StackExchange (2017) (https://math.stackexchange.com/
questions/2375956/lifting-a-convergent-net-through-a-quotient-map; accessed January 21, 2023).

[GN43] I. Gelfand and M. Neumark, On the imbedding of normed rings into the ring of operators in
Hilbert space. (Russian summary), Rec. Math. [Mat. Sbornik] N.S. 12 (1943), 197–213.

[Gre80] P. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88–104.
[GMR18] R. Grigorchuk, M. Musat, and M. Rørdam, Just-infinite C∗-algebras, Comment. Math. Helv.

93 (2018), no. 1, pp. 157–201.
[HRSW13] R. Hazlewood, I. Raeburn, A. Sims and S.B.G. Webster, On some fundamental results about

higher-rank graphs and their C∗-algebras, Proc. Edinburgh Math. Soc. 56 (2013), 575–597.
[HS04] J.H. Hong and W. Szymański, The primitive ideal space of the C∗-algebras of infinite graphs, J.

Math. Soc. Japan 56 (2004), 45–64.
[aHNS21] A. an Huef, A.C.S. Ng, and A. Sims, Stably finite extensions of rank-two graph C∗-algebras, J.

Operator Th., to appear (arXiv:2111.15165 [math.OA]).
[aHR97] A. an Huef and I. Raeburn, The ideal structure of Cuntz–Krieger algebras, Ergodic Theory

Dynam. Systems 17 (1997), 611–624.
[Kat04] T. Katsura, On C∗-algebras associated with C∗-correspondences, J. Funct. Anal., 217 (2004),

366–401.

http://arxiv.org/abs/2211.06126
https://math.stackexchange.com/questions/2375956/lifting-a-convergent-net-through-a-quotient-map
https://math.stackexchange.com/questions/2375956/lifting-a-convergent-net-through-a-quotient-map
http://arxiv.org/abs/2111.15165


50 K.A. BRIX, T.M. CARLSEN, AND A. SIMS

[Kat21] T. Katsura Ideal structure of C∗-algebras of singly generated dynamical systems, preprint 2021
(arXiv:2107.01389 [math.OA]).

[Kir95] E. Kirchberg, Exact C∗-algebras, tensor products, and the classification of purely infinite algebras,
Proc. ICM (1995), pp. 943–954.

[Kot12] M. Koto, Answer #193984, Math StackExchange (2012) (https://math.stackexchange.com/
a/193984; accessed May 12, 2022).

[KP00] A. Kumjian and D. Pask, Higher rank graph C∗-algebras, New York J. Math. 6 (2000), 1–20.
[KPR98] A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math.

184 (1998), 161–174.
[KPS16] A. Kumjian, D. Pask and A. Sims, Simplicity of twisted C∗-algebras of higher-rank graphs and

crossed products by quasifree actions, J. Noncommut. Geom. 10 (2016), 515–549.
[Mac51] G.W. Mackey, On induced representations of groups, Amer. J. Math. 73 (1951), 576–592.
[MRW87] P.S. Muhly, J.N. Renault and D.P. Williams, Equivalence and Isomorphism for groupoid C∗-

algebras, J. Operator Theory 17 (1987), 3–22.
[Phi00] N.C. Phillips, A classification theorem for nuclear purely infinite simple C∗-algebras, Doc. Math.

5 (2000), 49–114.
[Rae05] I. Raeburn, Graph algebras, CBMS Regional Conference Series in Mathematics, 103. Published

for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathe-
matical Society, Providence, RI, 2005. vi+113 pp. ISBN: 0–8218–3660–9.

[RSY03] I. Raeburn, A. Sims and T. Yeend, Higher-rank graphs and their C∗-algebras, Proc. Edinburgh
Math. Soc. 46 (2003), 99–115.

[RW98] I. Raeburn and D.P. Williams, Morita equivalence and continuous-trace C∗-algebras, Mathemat-
ical Surveys and Monographs, 60. American Mathematical Society, Providence, RI, 1998. xiv+327
pp. ISBN: 0–8218–0860–5.

[Ren80] J.N. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathematics 793, Springer,
Berlin (1980).

[Ren91] J.N. Renault, The ideal structure of groupoid crossed product C∗-algebras, J. Operator Th. 25
(1991), 3–36.

[Rie74] M.A. Rieffel, Induced representations of C∗-algebras, Adv. Math. 13 (1974), 176–257.
[Sim20] A. Sims, Hausdorff étale groupoids and their C∗-algebras, in Operator algebras and dynamics:

groupoids, crossed products and Rokhlin Dimension (F. Perera, Ed.) in Advanced Coursed in Math-
ematics. CRM Barcelona, Birkhäuser, 2020.

[SW16] A. Sims and D.P. Williams, The primitive ideals of some étale groupoid C∗-algebras, Algebras
and Representation Theory 19 (2016), 255–276.

[Siw71] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and Appl. 1
(1971), 143–154.

[TWW17] A. Tikuisis, S. White and W. Winter, Quasidiagonality of nuclear C∗-algbebras, Ann. Math.
185 (2017), 229–284.

[Wi07] D.P. Williams, Crossed products of C∗-algebras, Mathematical Surveys and Monographs, 134.
American Mathematical Society, Providence, RI, 2007. xvi+528 pp. ISBN: 978–0–8218–4242–3; 0–
8218–4242–0.

[WvW21] D.P. Williams and D.W. van Wyk, The primitive ideal space of groupoid C∗-algebras for
groupoids with abelian isotropy, Indiana Univ. Math. J. 71 (2022), no. 1, 359–390.

[Win17] , W. Winter, Structure of nuclear C∗-algebras: From quasidiagonality to classification, and back
again, Proc. ICM (2017), pp. 1797–1820.

(K.A. Brix) School of Mathematics and Statistics, University of Glasgow, Glasgow G12
8QQ, United Kingdom

Email address: kabrix.math@fastmail.com

(T.M. Carlsen) Køge, Denmark
Email address: toke.carlsen@gmail.com

(A. Sims) School of Mathematics and Applied Statistics, University of Wollongong,
Wollongong, NSW 2522, Australia

Email address: asims@uow.edu.au

http://arXiv.org/abs/2107.01389
https://math.stackexchange.com/a/193984
https://math.stackexchange.com/a/193984

	1. Introduction
	2. Background material
	3. A family of representations
	4. The map pi is continuous
	5. The sandwiching lemma for Deaconu–Renault groupoids
	6. Harmonious families of bisections
	7. The primitive-ideal space
	8. The lattice of ideals of the C*-algebra of a Deaconu–Renault groupoid
	9. Convergence of primitive ideals
	10. Examples
	11. Ideals of higher-rank graphs
	References

