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Abstract. We present an example of a twist over a minimal Hausdorff étale groupoid such
that the restriction of the twist to the interior of the isotropy is not topologically trivial;
that is, the restricted twist is not induced by a continuous 2-cocycle.

1. Introduction

The theory of Cartan subalgebras in operator algebras deals with the question of recog-
nising when an operator algebra together with a distinguished abelian subalgebra arises as
the closure of the convolution algebra of compactly supported functions on a groupoid, pos-
sibly twisted by cohomological data. The study of this question began with Feldman and
Moore [12, 13, 14] in the context of von Neumann algebras. Their theorem says that every
Cartan pair of von Neumann algebras arises from a measured equivalence relation R and a
measurable circle-valued 2-cocycle on R. The corresponding question for C*-algebras took
longer to answer. Renault [20, Theorem II.4.15] obtained an exact analogue of Feldman and
Moore’s results when the Cartan subalgebra is densely spanned by projections; but more
general commutative subalgebras required Kumjian’s notion of a twist (essentially a princi-
pal T-bundle that is also a topological groupoid) over an étale groupoid [15]; and Renault
[22] subsequently generalised Kumjian’s work, which applied only to second-countable prin-
cipal groupoids, to the more general situation of second-countable topologically principal
groupoids. Raad [19] later generalised Renault’s work to the most general possible situation
(see [2, Theorem 3.1]) of twists over effective groupoids.

The key difference between the measurable and topological settings, as recognised by
Kumjian, is the existence of circle bundles that are locally trivial but not globally trivial. In
all of the constructions described above, there is a natural way to construct from a pair (A,B)
a twist : a principal circle bundle E (measurable in the setting of [12] or topological in the
setting of [15, 22]) over the groupoid G of germs for the action of the normaliser of B in A on
the spectrum of B in such a way that the reduced C*-completion of the convolution algebra
of sections of the bundle coincides with A. For measurable bundles as in [12] one can always
choose a measurable section of the bundle, and then the measurable 2-cocycle appearing
in Feldman and Moore’s theorem is the obstruction to this section being a homomorphism.
Likewise when the spectrum of A is totally disconnected, so is the groupoid G, and so the
bundle E admits a continuous global section, once again yielding the continuous 2-cocycle
of Renault’s result in [20]. Kumjian’s innovation was to describe a C*-algebra constructed
directly from the bundle E without the need to convert to a 2-cocycle.
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Since then, the theory of twisted groupoid C*-algebras has largely concerned itself with
twists and their C*-algebras rather than with continuous 2-cocycles. In particular, the first
author proved an automatic-injectivity theorem [1, Theorem 6.3] for homomorphisms π of
C*-algebras of twists (E ,G) over Hausdorff étale groupoids, whose key hypothesis is that π
should be injective on the subalgebra corresponding to the interior of the isotropy in G. This
raises a natural question, and one that the authors of this paper have been asked a number
of times over the last few years: “I’d rather just work with cocycles; do I really need to
deal with twists?” More precisely, is there an explicit example of a twist that satisfies the
hypotheses of the injectivity theorem of [1] but can’t be handled by results like those of [3]
for continuous 2-cocycles?

The simplest example of a twist that does not arise from a 2-cocycle is due to Kumjian—
communicated to the second-named author in private correspondence, and described and
generalised in [15, Section 4]. We give the details in Section 2, but the basic idea is as
follows. Fix a nontrivial principal T-bundle p : S → X over a locally compact Hausdorff
space X. Let G be the transformation groupoid for Z2 interchanging two copies of X. The
twist E comprises a copy of (X ⊔ X) × T over the unit space of G, and copies of S and
its conjugate bundle S over the nontrivial arrows. Multiplication is defined using pointwise
multiplication in T, the natural actions of T on S and S, and the standard isomorphisms
(S ∗X S)/T ∼= X × T and (S ∗X S)/T ∼= X × T. This twist cannot arise from a 2-cocycle
because it contains a copy of the topologically nontrivial bundle S, whereas twists arising
from cocycles are topologically trivial.

However, this twist is not minimal (each orbit has just two points), and its reduction to
the interior of the isotropy of G is the trivial twist

(X ⊔X)× T → (X ⊔X)× T → X ⊔X,
so arises from a (trivial) continuous 2-cocycle. In particular, this example does not answer
the question above. Since twisted groupoid C*-algebras have attracted significant recent
interest ([1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 23, 24]), we provide here an example that does
answer the question (see Section 3), establishing the following result.

Theorem A. There exists a twist E over a minimal Hausdorff étale groupoid G such that
the induced twist IE over the interior IG of the isotropy of G does not come from a 2-cocycle.

2. Kumjian’s example

In this section, we present Kumjian’s example of a twist that does not arise from a 2-cocycle
(see [15, Section 4]). While, as discussed in the introduction, Kumjian’s construction does
not provide an example of a situation in which the uniqueness theorem of [1] is applicable but
a similar theorem for effective groupoids (such as [25, Theorem 10.2.7] or [21, Corollary 4.9])
would not suffice, it conveys the central idea of our construction later.

Kumjian’s example is as follows. Let p : S → X be a nontrivial principal T-bundle over
a locally compact Hausdorff space (for example, the Hopf fibration). Let p : S → X be
the conjugate bundle; so as a set, we have S := {t : t ∈ S}, and the map t 7→ t is a
homeomorphism, but the T-action on S is the conjugate action z · t = z · t. Define

S ∗X S := {(s, t) ∈ S × S : p(s) = p(t)},
and let (S ∗X S)/T be the quotient of S ∗X S by the equivalence relation given by (z · s, t) ∼
(s, z · t) for all s ∈ S, t ∈ S, and z ∈ T. Define (S ∗X S)/T analogously.

Let R2 be the full equivalence relation on the two-point set {0, 1}, regarded as a discrete
groupoid with two units; we identify the unit space of R2 with {0, 1}. So R2 has two elements
that are not units: the element (0, 1) with range 0 and source 1, and its inverse (1, 0) with
range 1 and source 0. Regarding X as a topological groupoid consisting entirely of units,
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let G := X ×R2, the product groupoid. So G is a locally compact Hausdorff étale groupoid

with unit space G(0) = X × R
(0)
2 = X × {0, 1}, and remaining elements X × {(0, 1), (1, 0)},

with range and source maps given by r(x, a) = (x, r(a)) and s(x, a) = (x, s(a)), and with

multiplication given by (x, a)(x, b) = (x, ab) whenever (a, b) ∈ R
(2)
2 . Now consider the set

E := (X × T× {0}) ⊔ (S × {(0, 1)}) ⊔
(
S × {(1, 0)}

)
⊔ (X × T× {1}) .

Let E(0) = X × {0, 1}. Define the range map r : E → E(0) by

r(x, z, i) = (x, i), x ∈ X, z ∈ T, i ∈ {0, 1},
r(t, (0, 1)) = (p(t), 0), t ∈ S,

r(t, (1, 0)) = (p(t), 1) = (p(t), 1), t ∈ S.

Define inversion by

(x, z, i)−1 = (x, z, i), x ∈ X, z ∈ T, i ∈ {0, 1},
(t, (0, 1))−1 = (t, (1, 0)), t ∈ S,

(t, (1, 0))−1 = (t, (0, 1)), t ∈ S,

and the source map by s(η) = r(η−1). Finally, let θl : (S∗XS)/T → T and θr : (S∗XS)/T → T
be the maps θl([z · t, t]) := z and θr([t, z · t]) := z, and define multiplication on E by

(x,w, i)(x, z, i) = (x,wz, i), x ∈ X, w, z ∈ T, i ∈ {0, 1},
(p(t), w, 0)(t, (0, 1)) = (w · t, (0, 1)) = (t, (0, 1))(p(t), w, 1), t ∈ S,w ∈ T,
(p(t), w, 1)(t, (1, 0)) = (w · t, (1, 0)) = (t, (1, 0))(p(t), w, 0), t ∈ S, w ∈ T,
(t, (0, 1))(s, (1, 0)) = (p(t), θl([t, s]), 0), and

(s, (1, 0))(t, (0, 1)) = (p(t), θr([s, t]), 1), t ∈ S, s ∈ S, p(t) = p(s).

These operations make E into a groupoid, and we obtain a twist

G(0) × T ≃ X × T× {0, 1} ı−→ E
π−→ G,

where ı is the inclusion map, and π is given by

π(x, z, i) = (x, i), x ∈ X, z ∈ T, i ∈ {0, 1},
π(t, (0, 1)) = (p(t), (0, 1)), t ∈ S,

π(t, (1, 0)) = (p(t), (1, 0)), t ∈ S.

We claim that this twist does not arise from a continuous T-valued 2-cocycle on G. To see
why, suppose otherwise. Then there is a continuous global section Σ: G → E. Restriction
of this section to the subspace X × {(0, 1)} gives a section

Σ|X×{(0,1)} : X × {(0, 1)} → S × {(0, 1)}.

Let π1 : S × {(1, 0)} → S be the projection map and define i1 : X → X × {(0, 1)} by
i1(x) = (x, (0, 1)). Then π1 ◦ Σ ◦ i1 is a global section of the bundle p : S → X. This
contradicts the nontriviality of p : S → X. So E is not topologically trivial. However,

Iso(G) = {γ ∈ G : r(γ) = s(γ)} = X × {0, 1} = G(0),

so the restriction of the twist to the interior of the isotropy is trivial.
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3. The proof of Theorem A

3.1. Defining the twisted groupoid as a topological space. Let p : B → X be any
nontrivial principal T-bundle over a locally compact Hausdorff space X such that p is locally
trivial and there exists a minimal homeomorphism σ : X → X. For example, take σ to be
an irrational rotation map on X = T2: by [18, Theorem 6.22], since T2 has second integral
cohomology group Z, it admits a nontrivial principal T-bundle p : B → T2. For each x ∈ X,
let Bx be the fibre p−1(x), and note that for each fixed b ∈ Bx, the map T ∋ z 7→ z · b ∈ Bx

is a homeomorphism.
Let F2 = ⟨a, a−1, b, b−1⟩ be the free group with two generators a and b. For each w ∈ F2,

we will define an associated principal T-bundle p(w) : B(w) → X, and we will then define a
groupoid structure on the disjoint union

⊔
w∈F2

B(w).
Let α be the group action of F2 on X that is defined on generators by

αa = σ and αb = idX .

Let ε be the identity in F2—the empty word. Define p(ε) : C(ε) → X and p(a) : C(a) → X each
to be the trivial bundleX×T → X with T-action z·(x,w) := (x, zw). Let p(a

−1) : C(a−1) → X
be the trivial bundle X × T → X with the conjugate T-action z · (x,w) = (x, zw). Let
p(b) : C(b) → X be the nontrivial bundle p : B → X. Let B be a copy of B and let b 7→ b be
the map that takes an element of B to its copy in B. Let p : B → X be given by p(b) := p(b),
and define a T-action on B by z ·b := z · b. Then p : B → X with this action is the conjugate
principal T-bundle of p : B → X. Let p(b

−1) : C(b−1) → X be this conjugate bundle.

Notation 3.1. For d ∈ {b, b−1}, if c ∈ C(d), then c denotes the copy of c in C(d−1). And

for d ∈ {ε, a, a−1}, if (x, z) ∈ C(d), then we define (x, z) := (αd(x), z) ∈ C(d−1). So for all
d ∈ {ε, a, a−1, b, b−1} and c ∈ C(d), we have c = c, and

p(d
−1)(c) = αd

(
p(d)(c)

)
. (3.1)

Moreover, the map C(d) ∋ c 7→ c ∈ C(d−1) is a homeomorphism.

For w ∈ F2\{ε}, let |w| denote the word length of w, and write w = w1w2 · · ·w|w|; we

define |ε| = 0. For |w| ≤ 1, we define B(w) := C(w). For |w| ≥ 2, let B(w) be the quotient of

C(w) :=
{
(c1, . . . , c|w|) : ci ∈ C(wi) for each i ∈ {1, . . . , |w|}, and

p(wi)(ci) = αwi+1

(
p(wi+1)(ci+1)

)
for each i ∈ {1, . . . , |w| − 1}

}
by the equivalence relation

(c1, . . . , z · ci, . . . , c|w|) ∼ (c1, . . . , z · cj, . . . , c|w|), for all z ∈ T, i, j ∈ {1, . . . , |w|}.

We denote the equivalence class of c = (c1, . . . , c|w|) ∈ C(w) by [c] = [c1, . . . , c|w|] ∈ B(w).

We give C(w) ⊆
∏|w|

i=1C
(wi) the subspace topology, and B(w) the quotient topology.

Lemma 3.2. For each w ∈ F2, C
(w) is a locally compact Hausdorff space.

Proof. When w = ε, we have C(w) = X × T, which is a locally compact Hausdorff space. If

w ̸= ε, and
(
ci1, . . . , c

i
|w|
)
i∈I is a net in C(w) that converges to (c1, . . . , c|w|) ∈

∏|w|
j=1C

(wj), then

continuity of the p(wj) and σ ensure that (c1, . . . , c|w|) ∈ C(w). So C(w) is a closed subspace

of
∏|w|

j=1C
(wj) and hence is locally compact and Hausdorff. □

Lemma 3.3. For each w ∈ F2, B
(w) is a locally compact Hausdorff space.

Proof. For w = ε the result is trivial, so suppose w ̸= ε. For each n ∈ N\{0}, define

Kn :=
{
(z1, . . . , zn) ∈ Tn : z1 · · · zn = 1

}
=

{
(z1, . . . , zn−1, z1 · · · zn1) : z1, . . . , zn−1 ∈ T

}
.
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Then Kn
∼= Tn−1 is compact for n ∈ N\{0}. Also, K|w| is a group under coordinatewise

multiplication, and acts coordinatewise on C(w). For c = (c1, . . . , c|w|) ∈ C(w),

B(w) ∋ [c] =
{
(z1 · c1, . . . , z|w| · c|w|) : (z1, . . . , z|w|) ∈ K|w|

}
= K|w| · c.

Thus B(w) is the quotient of C(w) by the action of K|w|. Since C
(w) is locally compact Haus-

dorff by Lemma 3.2 and K|w| is compact, [7, Proposition 2 and Corollary 1 of Section III.4.1

and Proposition 3 of Section III.4.2] imply that B(w) is locally compact Hausdorff. □

Lemma 3.4. For each w ∈ F2\{ε}, the map p(w) : B(w) → X given by

p(w)
(
[c1, . . . , c|w|]

)
= p(w|w|)(c|w|)

defines a locally trivial principal T-bundle over X with T-action given by

z · [c1, . . . , c|w|] := [c1, . . . , z · c|w|] for z ∈ T.

Moreover, for each [c1, . . . , c|w|] ∈ B(w) and i ∈ {1, . . . , |w| − 1}, we have

p(wi)(ci) = αwi+1···w|w|

(
p(w)

(
[c1, . . . , c|w|]

))
. (3.2)

Proof. Fix w ∈ F2\{ε}. Since p(w|w|) : C(w|w|) → X is a continuous surjection, the map
C(w) ∋ (c1, . . . , c|w|) 7→ p(w|w|)(c|w|) ∈ X is a continuous surjection, and it follows that it

descends to a continuous surjection on the quotient B(w) of C(w).
Similarly, since the action of T on B(d) is continuous and fibre-preserving for each d ∈

{ε, a, a−1, b, b−1}, the formula z · [c1, . . . , c|w|] := [c1, . . . , z · c|w|] defines a continuous fibre-

preserving action of T on C(w).
For each [c1, . . . , c|w|] ∈ B(w) and i ∈ {1, . . . , |w| − 1}, we have

p(wi)(ci) = αwi+1

(
p(wi+1)(ci+1)

)
by the definition of B(w), and Equation (3.2) follows by the definition of p(w).
We show that the T-bundle p(w) : B(w) → X is principal. Fix x ∈ X, and fix [c] =

[c1, . . . , c|w|] ∈ B(w) such that p(w)([c]) = x. We must show that z 7→ z · [c] defines a homeo-

morphism φ[c] : T →
(
B(w)

)
x
= (p(w))−1(x). Since T is compact and

(
B(w)

)
x
is Hausdorff by

Lemma 3.3, it suffices to show that φ[c] is a continuous bijection. Continuity of φ[c] follows
from continuity of the T-action. For injectivity, suppose that z ·[c] = z′ ·[c] for some z, z′ ∈ T.
Then [c] = (zz′) · [c] =

[
c1, . . . , (zz

′) · c|w|
]
, so by definition of the equivalence relation used

to define B(w), we have zz′ = 1. Thus z = z′, and φ[c] is injective. For surjectivity, fix

[c′] = [c′1, . . . , c
′
|w|] ∈

(
B(w)

)
x
. Then Equation (3.2) implies that for each i ∈ {1, . . . , |w|},

p(wi)(ci) = αwi+1···w|w|

(
p(w)([c])

)
= αwi+1···w|w|(x) = αwi+1···w|w|

(
p(w)([c′])

)
= p(wi)(c′i). (3.3)

(Note that for i = |w|, we have wi+1 · · ·w|w| = ε, so the above equation says that p(w|w|)(ci) =

αε(x) = x = p(w|w|)(c′i) in this case.) By Equation (3.3) and by principality of the T-bundle
p(wi) : C(wi) → X, for each i ∈ {1, . . . , |w|}, there exists a unique element zi ∈ T such that
c′i = zi · ci. Therefore,

[c′] = [c′1, . . . , c
′
|w|] = [z1 · c1, . . . , z|w| · c|w|] = (z1 · · · z|w|) · [c] = φ[c](z1 · · · z|w|),

so φ[c] is surjective. Hence p
(w) : B(w) → X is a principal T-bundle.

To complete the proof, we must show that p(w) : B(w) → X is locally trivial. Since it
is principal, it suffices to show that it admits continuous local sections: these induce local
trivialisations because the T-action is free and transitive on each fibre ofB(w). Fix x ∈ X. For
each i ∈ {1, . . . , |w|}, the principal T-bundle p(wi) : C(wi) → X is locally trivial, so there exists

an open neighbourhood U
(i)
x ⊆ X of αwi+1···w|w|(x) on which the bundle p(wi) : C(wi) → X
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admits a continuous local section S
(wi)
x : U

(i)
x → C(wi). Then p(wi) ◦ S(wi)

x = id
U

(i)
x

for each

i ∈ {1, . . . , |w|}. Define
Ux :=

⋂|w|
i=1 α

−1
wi+1···w|w|

(
U

(i)
x

)
.

Then Ux ⊆ X is an open neighbourhood of x since αw′ is a homeomorphism for each w′ ∈ F2.
For each u ∈ Ux and each i ∈ {1, . . . , |w|}, define

cui := S(x)
wi

(
αwi+1···w|w|(u)

)
,

so that
p(wi)(cui ) = αwi+1···w|w|(u) = αwi+1

(
p(wi+1)(cui+1)

)
. (3.4)

Then
[
cu1 , . . . , c

u
|w|
]
∈ B(w), and we define S

(x)
w : Ux → B(w) by S

(x)
w (u) :=

[
cu1 , . . . , c

u
|w|
]
. All the

maps involved in the definition of S
(x)
w are continuous on Ux, so S

(x)
w is continuous. Moreover,

by letting i = |w| − 1 in Equation (3.4) for the final equality, we see that

p(w)
(
S(x)
w (u)

)
= p(w)

([
cu1 , . . . , c

u
|w|
])

= p(w|w|)
(
cu|w|

)
= u,

which proves that S
(x)
w : Ux → B(w) is a local section of p(w) : B(w) → X. Therefore,

p(w) : B(w) → X is a locally trivial principal T-bundle. □

Let
E :=

⊔
w∈F2

B(w) =
{
(w, c) : w ∈ F2, c ∈ B(w)

}
, (3.5)

under the disjoint union topology. For each w ∈ F2, define Ew := {w} × B(w). We will give
E the structure of a topological groupoid.

3.2. Defining multiplication on the twisted groupoid. In this section we define a
continuous partially defined multiplication on the space E defined in Equation (3.5), that
is F2-graded in the sense that it carries Ew s∗r Ew′ to Eww′ . The basic idea is that if there
is cancellation in the product of w and w′ in F2, say w = uv and w′ = v−1u′, then we can
eliminate the corresponding entries in B(w) and B(w′) of composable pairs in Ew × Ew′ .
For d, e ∈ {ε, a, a−1, b, b−1} we describe a Baer-sum-like product B(d,e) of B(d) and B(e),

called their balanced fibred product. Specifically, we define B(d,e) as the quotient of

C(d,e) := B(d)
p(d)∗αe◦p(e) B

(e) = {(c1, c2) ∈ B(d) ×B(e) : p(d)(c1) = αe(p
(e))(c2)}

by the equivalence relation

(c1, z · c2) ∼ (z · c1, c2), for z ∈ T. (3.6)

We endow C(d,e) with the subspace topology inherited from C(d) × C(e), and B(d,e) with the
quotient topology. Note that if d, e ̸= ε and d ̸= e−1, then C(d,e) = C(de) and B(d,e) = B(de).
In Lemma 3.6 we show that for all d, e ∈ {ε, a, a−1, b, b−1}, B(d,e) is homeomorphic to B(de).
We denote the equivalence class of (c1, c2) ∈ C(d,e) by [c1, c2] ∈ B(d,e). There is a continuous

action of T on B(d,e) given by

z · [c1, c2] := [z · c1, c2] = [c1, z · c2], for z ∈ T and [c1, c2] ∈ B(d,e).

Lemma 3.5. Fix d ∈ {ε, a, a−1, b, b−1}. For c ∈ B(d), let c be as in Notation 3.1. Then

B(d,d−1) =
{
z · [c, c] : z ∈ T, c ∈ C(d)

}
. (3.7)

Proof. For c ∈ C(d) and z ∈ T, we have p(d
−1)(c) = αd

(
p(d)(c)

)
by Equation (3.1). So

p(d)(z · c) = p(d)(c) = αd−1

(
p(d

−1)(c)
)
. Hence z · [c, c] = [z · c, c] ∈ B(d,d−1). For the re-

verse containment, fix [c1, c2] ∈ B(d,d−1). Then p(d)(c1) = αd−1

(
p(d

−1)(c2)
)
, so p(d

−1)(c2) =

αd

(
p(d)(c1)

)
= p(d

−1)(c1). Since p
(d−1) : C(d−1) → X is a principal T-bundle there is therefore

a unique z ∈ T such that c2 = z · c1. Thus [c1, c2] = [c1, z · c1] = z · [c1, c1], as required. □
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We now show that B(ε) acts as an identity under the balanced fibred product, in the sense
that for each d ∈ {ε, a, a−1, b, b−1}, we have B(ε,d) ≃ C(d) ≃ B(d,ε) and B(d,d−1) ≃ C(ε).

Lemma 3.6. (a) For each d ∈ {ε, a, a−1, b, b−1}, the maps

ψε,d : B
(ε,d) ∋

[(
αd(p

(d)(c)), z
)
, c
]
7→ z · c ∈ C(d) = B(d) and

ψd,ε : B
(d,ε) ∋

[
c,
(
p(d)(c), z

)]
7→ z · c ∈ C(d) = B(d)

are T-equivariant homeomorphisms.
(b) For each d ∈ {a, a−1, b, b−1}, the map

ψd,d−1 : B(d,d−1) ∋ z · [c, c] 7→ z ·
(
αd(p

(d)(c)), 1
)
= z ·

(
p(d

−1)(c), 1
)

is a T-equivariant homeomorphism.

To prove Lemma 3.6, we need some notation and preliminary results.

Notation 3.7. Given two elements s1 and s2 in the same fibre of a principal T-bundle, we
write ⟨s1, s2⟩ for the unique element of T such that ⟨s1, s2⟩ · s2 = s1.

Remark 3.8. Fix z ∈ T, and let s1 and s2 be in the same fibre of a principal T-bundle. Then
⟨z · s1, s2⟩ · s2 = z · s1 = z⟨s1, s2⟩ · s2, and so ⟨z · s1, s2⟩ = z⟨s1, s2⟩. Similarly, ⟨s1, z · s2⟩ =
z⟨s1, s2⟩, and ⟨z · s1, s1⟩ = z = ⟨s1, z · s1⟩. Furthermore, ⟨s1, s2⟩ = ⟨s2, s1⟩ = ⟨s1, s2⟩.

Lemma 3.9. Let q : T → Y be a principal T-bundle. For each y ∈ Y , the map Ty × Ty ∋
(s1, s2) 7→ ⟨s1, s2⟩ ∈ T is continuous and surjective.

Proof. Fix y ∈ Y and t ∈ Ty. Since q : T → Y is principal, the map φt : T ∋ z 7→ z · t ∈ Ty
is a homeomorphism. Fix s1, s2 ∈ Ty. Then s1 = φ−1

t (s1) · t and s2 = φ−1
t (s2) · t, and so

(φ−1
t (s1)φ

−1
t (s2)) · s2 = s1.

Thus ⟨s1, s2⟩ = φ−1
t (s1)φ

−1
t (s2), showing continuity. For surjectivity, fix z ∈ T. For any

s ∈ Ty, we have z · s ∈ Ty, and ⟨z · s, s⟩ = z by Remark 3.8. □

Proof of Lemma 3.6. For (a), we prove the statement about ψε,d; the proof of the statement
about ψd,ε is similar. Fix d ∈ {ε, a, a−1, b, b−1}. For

(
(x, z), c

)
∈ C(ε,d), we have x =

p(ε)(x, z) = αd

(
p(d)(c)

)
, so

C(ε,d) =
{(

(x, z), c
)
: z ∈ T, c ∈ C(d), x = αd

(
p(d)(c)

)}
.

We claim that the map

Ψε,d : C
(ε,d) ∋

((
αd(p

(d)(c)), z
)
, c
)
7→ z · c ∈ C(d)

respects the equivalence relation (3.6). Indeed, for u ∈ T,

Ψε,d

((
αd(p

(d)(c)), z
)
, u · c

)
= z · (u · c) = uz · c = Ψε,d

(
u ·

(
αd(p

(d)(c)), z
)
, c
)
.

Thus Ψε,d descends to a map

ψε,d : B
(ε,d) ∋

[(
αd(p

(d)(c)), z
)
, c
]
7→ z · c ∈ C(d).

For all u ∈ T and [(x, z), c] ∈ B(ε,d), we have

ψε,d

(
u · [(x, z), c]

)
= ψε,d([(x, uz), c]) = uz · c = u · (z · c) = u · ψε,d

(
[(x, z), c]

)
,

so ψε,d is T-equivariant. To see that ψε,d is a continuous surjection, note that Ψε,d : C
(d,ε) →

C(d) is continuous because T acts continuously on C(d). Also, Ψε,d is surjective because
ψε,d

(
(αd(p

(d)(c)), 1), c
)
= c for all c ∈ C(d). Write qε,d : B

(ε,d) → C(ε,d) for the quotient map.
Since ψε,d ◦ qε,d = Ψε,d, the map ψε,d is a continuous surjection. For injectivity, suppose that

ψε,d

(
[(x, u), c]

)
= ψε,d

(
[(y, z), e]

)



8 ARMSTRONG, NG, SIMS, AND ZHOU

for some [(x, u), c], [(y, z), e] ∈ B(ε,d). Then

x = αd

(
p(d)(c)

)
= αd

(
p(d)(e)

)
= y and u · c = z · e,

so

[(x, u), c] = u · [(x, 1), c] = [(x, 1), u · c] = [(y, 1), z · e] = z · [(y, 1), e] = [(y, z), e],

which proves that ψε,d is injective. Thus ψε,d is bijective with inverse given by

ψ−1
ε,d(c) =

[(
αd(p

(d)(c)), 1
)
, c
]
.

Since qε,d, αd, and p
(d) are continuous, so is ψ−1

ε,d , so ψε,d is a T-equivariant homeomorphism.

For part (b), fix d ∈ {a, a−1, b, b−1}, and consider the map

Ψd,d−1 : C(d,d−1) ∋ (c1, c2) 7→
(
p(d

−1)(c2), ⟨c1, c2⟩
)
∈ C(ε).

For all z ∈ T and (c1, c2) ∈ C(d,d−1), we have (z · c1, c2) ∼ (c1, z · c2) = (c1, z · c2), and by
Remark 3.8, ⟨z · c1, c2⟩ = z⟨c1, c2⟩ = ⟨c1, z · c2⟩. Hence

Ψd,d−1(z · c1, c2) =
(
p(d

−1)(c2), ⟨z · c1, c2⟩
)
=

(
p(d

−1)(z · c2), ⟨c1, z · c2⟩
)
= Ψd,d−1(c1, z · c2),

and so Ψd,d−1 is constant on equivalence classes. Thus Ψd,d−1 descends to a map

ψd,d−1 : B(d,d−1) ∋ [c1, c2] 7→
(
p(d

−1)(c2), ⟨c1, c2⟩
)
∈ C(ε).

Recall from Lemma 3.5 that B(d,d−1) =
{
z · [c, c] : z ∈ T, c ∈ C(d)

}
, and recall from

Equation (3.1) that αd

(
p(d)(c)

)
= p(d

−1)(c) for all c ∈ C(d). For all z ∈ T and c ∈ C(d), we
have ⟨z · c, c⟩ = z by Remark 3.8, and it follows that

ψd,d−1

(
z · [c, c]

)
= ψd,d−1

(
[z · c, c]

)
=

(
p(d

−1)(c), ⟨z · c, c⟩
)
= z ·

(
p(d

−1)(c), 1
)
= z · ψd,d−1([c, c]),

so ψd,d−1 is T-equivariant. To see that ψd,d−1 is a continuous surjection, first note that

p(d
−1) : C(d−1) → X is a continuous surjection by definition. Hence Lemma 3.9 implies that

Ψd,d−1 : C(d,d−1) → C(ε) is a continuous surjection. Writing qd,d−1 : C(d,d−1) → B(d,d−1) for the
quotient map and using that ψd,d−1 ◦ qd,d−1 = Ψd,d−1 , it follows that ψd,d−1 is a continuous
surjection. To see that ψd,d−1 is injective, suppose that

ψd,d−1

(
u · [c, c]

)
= ψd,d−1

(
z · [e, e]

)
,

for some u, z ∈ T and c, e ∈ C(d). Then
(
p(d

−1)(c), u
)
=

(
p(d

−1)(e), z
)
, so u = z, and since

p(d
−1) : C(d−1) → X is a principal T-bundle, there is a unique element v ∈ T such that c = v ·e.

Hence c = v · e = v · e, and so

u · [c, c] = z · [v · e, v · e] = zvv · [e, e] = z · [e, e],
which proves that ψd,d−1 is injective. Thus ψd,d−1 is bijective with inverse given by

ψ−1
d,d−1

(
p(d

−1)(c), z
)
= z · [c, c].

For any (x, z) ∈ C(ε), since p(d
−1) is locally trivial it has a continuous section on a neighbour-

hood x. So ψ−1
d,d−1 is continuous at (x, z). Thus ψd,d−1 is a T-equivariant homeomorphism. □

Notation 3.10. For d, e ∈ {a, a−1, b, b−1} with d ̸= e−1, we define ψd,e := idB(d,e) .

We use the next lemma to see that the maps ψd,d′ determine an associative operation.

Lemma 3.11. Fix d, d′ ∈ {ε, a, a−1, b, b−1}. For all e, e′, e† ∈ C(ε), c, c′′ ∈ C(d), c′ ∈ C(d′),

and c† ∈ C(d−1) such that the following operations are defined, we have

(a) ψd,ε

([
ψε,d([e, c]), e

′]) = ψε,d

([
e, ψd,ε([c, e

′])
])
;

(b) ψd,d′
([
ψd,ε([c, e

′]), c′
])

= ψd,d′
([
c, ψε,d′([e

′, c′])
])
;

(c) ψd,d−1

([
ψε,d([e, c]), c

†]) = ψε,ε

([
e, ψd,d−1([c, c†])

])
;
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(d) ψε,ε

([
ψd,d−1([c, c†]), e†

])
= ψd,d−1

([
c, ψd−1,ε([c

†, e†])
])
; and

(e) ψε,d

([
ψd,d−1([c, c†]), c′′

])
= ψd,ε

([
c, ψd−1,d([c

†, c′′])
])
.

Proof. Fix e, e′, e† ∈ C(ε), c, c′′ ∈ C(d), c′ ∈ C(d′), and c† ∈ C(d−1) such that (e, c) ∈ C(ε,d),

(c, e′) ∈ C(d,ε), (e′, c′) ∈ C(ε,d′), (c, c†) ∈ C(d,d−1), (c†, e†) ∈ C(d−1,ε), and (c†, c′′) ∈ C(d−1,d).
Then there exist x, x′, x† ∈ X and z, z′, z† ∈ T such that e = (x, z), e′ = (x′, z′), and
e† = (x†, z†). It then follows from Lemma 3.6(a) that

ψε,d([e, c]) = z · c, ψd,ε([c, e
′]) = z′ · c, ψε,d′([e

′, c′]) = z′ · c′, and ψd−1,ε([c
†, e†]) = z† · c†.

For part (a), we use Lemma 3.6(a) to see that

ψd,ε

([
ψε,d([e, c]), e

′]) = ψd,ε

(
[z · c, e′]

)
= zz′ · c = ψε,d

(
[e, z′ · c]

)
= ψε,d

([
e, ψd,ε([c, e

′])
])
.

For part (b), we have

ψd,d′
([
ψd,ε([c, e

′]), c′
])

= ψd,d′
([
z′ · c, c′

])
= ψd,d′

([
c, z′ · c′

])
= ψd,d′

([
c, ψε,d′([e

′, c′])
])
.

For part (c), we use Lemma 3.6(a) to see that

ψd,d−1

([
ψε,d([e, c]), c

†]) = ψd,d−1

(
[z · c, c†]

)
= z · ψd,d−1

(
[c, c†]

)
= ψε,ε

([
e, ψd,d−1([c, c†])

])
.

For part (d), we have

ψε,ε

([
ψd,d−1([c, c†]), e†

])
= z† ·ψd,d−1([c, c†]) = ψd,d−1

([
c, z† · c†

])
= ψd,d−1

([
c, ψd−1,ε([c

†, e†])
])
.

For part (e), note that since (c, e′) ∈ C(d,ε), we have p(d)(c) = p(ε)(e′) = x′, and since

(e, c) ∈ C(ε,d), (c, c†) ∈ C(d,d−1), and (c†, c′′) ∈ C(d−1,d), we have

x = p(ε)(e) = αd

(
p(d)(c)

)
= αd

(
αd−1

(
p(d

−1)(c†)
))

= p(d
−1)(c†) = αd

(
p(d)(c′′)

)
.

So p(d)(c′′) = p(d)(c) = x′, and by Equation (3.1), p(d
−1)(c) = αd

(
p(d)(c)

)
= p(d

−1)(c†) = x.

Since p(d) : C(d) → X and p(d
−1) : C(d−1) → X are principal T-bundles, there are unique

elements u, u† ∈ T such that c′′ = u · c and c† = u† · c. So Lemma 3.6(b) yields

ψd,d−1([c, c†]) = (x, u†) and ψd−1,d([c
†, c′′]) = (x′, u†u).

It then follows by Lemma 3.6(a) that

ψε,d

([
ψd,d−1([c, c†]), c′′

])
= ψε,d

(
[(x, u†), u · c]

)
= u†u · c

= ψd,ε

([
c, (x′, u†u)

])
= ψd,ε

([
c, ψd−1,d([c

†, c′′])
])
. □

We now extend the definition of the balanced fibred product to obtain an operation(
B(w), B(w′)

)
7→ B(w,w′)

for w,w′ ∈ F2. For each w,w
′ ∈ F2, let B

(w,w′) be the quotient of the set

C(w,w′) := B(w)
p(w

′)∗αw′◦p(w′) B(w′) = {(c1, c2) ∈ B(w) ×B(w′) : p(w)(c1) = αw′(p(w
′))(c2)}

by the equivalence relation

(c1, z · c2) ∼ (z · c1, c2), for z ∈ T.

We endow C(w,w′) with the subspace topology inherited fromB(w)×B(w′), andB(w,w′) with the
quotient topology. We denote the equivalence class of (c1, c2) ∈ C(w,w′) by [c1, c2] ∈ B(w,w′).
There is a continuous action of T on B(w,w′) given by

z · [c1, c2] := [z · c1, c2] = [c1, z · c2], for z ∈ T and [c1, c2] ∈ B(w,w′).

It follows from Lemmas 3.6 and 3.11 (by an induction argument on |w|+ |w′|) that for all
w,w′ ∈ F2, there is a T-equivariant homeomorphism

ψw,w′ : B(w,w′) → B(ww′)
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that coincides with the T-equivariant homeomorphisms defined in Lemma 3.6 and Nota-
tion 3.10 when |w|, |w′| ≤ 1, and satisfies the following two properties for all w,w′, w′′ ∈ F2:

(i) for all [c, c′] ∈ B(w,w′),

p(ww′)
(
ψw,w′([c, c′])

)
= p(w

′)(c′); and (3.8)

(ii) for all c ∈ B(w), c′ ∈ B(w′), and c′′ ∈ B(w′′) with [c, c′] ∈ B(w,w′) and [c′, c′′] ∈ B(w′,w′′),

ψww′,w′′
([
ψw,w′([c, c′]), c′′

])
= ψw,w′w′′

([
c, ψw′,w′′([c′, c′′])

])
. (3.9)

With E as in Equation (3.5), we define the set of composable pairs to be the space

E (2) :=
{(

(w, c), (w′, c′)
)
∈ E × E : (c, c′) ∈ C(w,w′)

}
⊆ E × E ,

under the subspace topology. We define multiplication on E by

E (2) ∋
(
(w, c), (w′, c′)

)
7→

(
ww′, ψw,w′([c, c′])

)
∈ E .

Equation (3.9) implies that this multiplication is associative. It is continuous because each
ψw,w′ is a homeomorphism onto the clopen set B(ww′).

3.3. Defining inversion on the twisted groupoid. In this section we define a continuous
inversion map on E . Recall from Notation 3.1 the definition of the involutive homeomorphism
B(w) ∋ c 7→ c ∈ B(w−1) for w ∈ F2 with |w| = 1. We first extend this map so that it is
defined for all w ∈ F2 and c ∈ B(w).
Fix w = w1 · · ·w|w| ∈ F2, and fix c = [c1, . . . , c|w|] ∈ B(w) such that ci ∈ B(wi) for each

i ∈ {1, . . . , |w|}. By the definition of B(w) and by Equation (3.1), we have

p(w
−1
i+1)(ci+1) = αwi+1

(
p(wi+1)(ci+1)

)
= p(wi)(ci) = αw−1

i

(
p(w

−1
i )(ci)

)
,

and so (ci+1, ci) ∈ B(w−1
i+1,w

−1
i ), for each i ∈ {1, . . . , |w| − 1}. Thus

c :=
[
c|w|, . . . , c1

]
∈ B(w−1).

For all z ∈ T,
z · c =

[
z · c|w|, . . . , c1

]
=

[
z · c|w|, . . . , c1

]
= z · c.

Moreover, c = c, so B(w) ∋ c 7→ c ∈ B(w−1) is a T-contravariant involutive homeomorphism.

Lemma 3.12. For all w ∈ F2 and c ∈ B(w), we have (c, c) ∈ C(w,w−1) and (c, c) ∈ C(w−1,w),

and ψw,w−1([c, c]) =
(
p(w

−1)(c), 1
)
and ψw−1,w([c, c]) =

(
p(w)(c), 1

)
.

Proof. Fix w = w1 · · ·w|w| ∈ F2, and fix c = [c1, . . . , c|w|] ∈ B(w) such that ci ∈ B(wi)

for each i ∈ {1, . . . , |w|}. By definition of the principal T-bundle p(w−1) : C(w−1) → X of

Lemma 3.4, we have p(w
−1)(c) = p(w

−1
1 )(c1), because c =

[
c|w|, . . . , c1

]
and c1 ∈ C(w−1

1 ). Using
Equation (3.2) for the second equality and Equation (3.1) for the third equality, we see that

αw

(
p(w)(c)

)
= αw1

(
αw2···w|w|

(
p(w)(c)

))
= αw1

(
p(w1)(c1)

)
= p(w

−1
1 )(c1) = p(w

−1)(c), (3.10)

and so p(w)(c) = αw−1

(
p(w

−1)(c)
)
. Thus (c, c) ∈ C(w,w−1) and (c, c) ∈ C(w−1,w).

We show that ψw−1,w([c, c]) =
(
p(w)(c), 1

)
by induction on |w|. If |w| ≤ 1, then the

claim holds by Lemma 3.6. Suppose that the claim holds for w ∈ F2 with |w| ≤ n. Fix
w ∈ F2 with |w| = n + 1 and c ∈ B(w). Write w′ = w1 · · ·wn. Since ψw′,wn+1 : B

(w′,wn+1) →
B(w) is a bijection, there exist c′ = [c1, . . . , cn] ∈ B(w′) and cn+1 ∈ B(wn+1) such that c =
ψw′,wn+1([c

′, cn+1]). By the inductive hypothesis, since (cn, cn+1) ∈ C(wn,wn+1),

ψ(w′)−1,w′([c′, c′]) =
(
p(w

′)(c′), 1
)
=

(
p(wn)(cn), 1

)
=

(
αwn+1(p

(wn+1)(cn+1)), 1
)
∈ B(ε).

Thus, Lemma 3.6(a) and Equation (3.9) yield

ψ(w′)−1,w([c′, c]) = ψ(w′)−1,w′wn+1

([
c′, c

])
= ψ(w′)−1,w′wn+1

([
c′, ψw′,wn+1([c

′, cn+1])
])
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= ψ(w′)−1w′,wn+1

([
ψ(w′)−1,w′([c′, c′]), cn+1

])
= ψε,wn+1

([(
αwn+1(p

(wn+1)(cn+1)), 1
)
, cn+1

])
= cn+1 ∈ B(wn+1),

and hence

ψw−1,w([c, c]) = ψw−1
n+1,(w

′)−1w

([
cn+1, ψ(w′)−1,w([c′, c])

])
= ψw−1

n+1,wn+1
([cn+1, cn+1]) =

(
p(wn+1)(cn+1), 1

)
=

(
p(w)(c), 1

)
,

completing the induction. An analogous argument gives ψw,w−1([c, c]) =
(
p(w

−1)(c), 1
)
. □

For each (w, c) ∈ E =
⊔

w∈F2
B(w), we define

(w, c)−1 := (w−1, c).

For each fixed w ∈ F2, the map {w} × B(w) ∋ (w, c) 7→ (w, c)−1 ∈ {w−1} × B(w−1) is a
homeomorphism, so inversion is continuous on E =

⊔
w∈F2

{w} ×B(w).

Fix (w, c) ∈ E . Then
(
(w, c)−1

)−1
= (w, c). Moreover, by Lemma 3.12, we have(

(w, c), (w−1, c)
)
,
(
(w−1, c), (w, c)

)
∈ E (2).

It follows from Lemma 3.12 that

r(w, c) := (w, c)(w, c)−1 = (w, c)(w−1, c) =
(
ww−1, ψw,w−1([c, c])

)
=

(
ε, (p(w

−1)(c), 1)
)
=

(
ε, (αw(p

(w)(c)), 1)
)
,

and

s(w, c) := (w, c)−1(w, c) = (w−1, c)(w, c) =
(
w−1w, ψw−1,w([c, c])

)
=

(
ε, (p(w)(c), 1)

)
.

Since p(w) : B(w) → X is surjective, it follows that

E (0) := r(E) = s(E) = {ε} ×
(
X × {1}

)
.

Identify E (0) with X. To see that E (0) consists of multiplicative units, fix x, y ∈ X such that

r(w, c) = (ε, (x, 1)) and s(w, c) = (ε, (y, 1)).

Then by Lemma 3.6(a), we have

r(w, c) (w, c) = (ε, (x, 1))(w, c) =
(
εw, ψε,w

(
[(x, 1), c]

))
= (w, c),

and
(w, c) s(w, c) = (w, c)(ε, (y, 1)) =

(
wε, ψw,ε

(
[c, (y, 1)]

))
= (w, c),

as required. Hence E is a topological groupoid under the given operations.

3.4. Defining the quotient groupoid G and proving that E → G is a twist. Recall
from Lemma 3.3 that for each w ∈ F2, B

(w) is a locally compact Hausdorff space. Since E
has the disjoint union topology, it follows that E is a locally compact Hausdorff groupoid.

We now define the quotient groupoid. Let

G := X ⋊α F2 = {(αw(x), w, x) : x ∈ X, w ∈ F2} ⊆ X × F2 ×X.

Then G is a groupoid under the multiplication and inversion operations

(x,w, u)(u,w′, y) := (x,ww′, y) and (x,w, y)−1 := (y, w−1, x).

The collection {
{(αw(x), w, x) : x ∈ U} : w ∈ F2, U is an open subset of X

}
is a basis for a locally compact Hausdorff étale groupoid topology on G. The unit space of
G is G(0) = {(x, ε, x) : x ∈ X}, which we identify with X. The range and source maps are
given by r(x,w, y) = x and s(x,w, y) = y. Since αa = σ is minimal, G is minimal. The
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1-cocycle cG : G → F2 defined by cG(αw(x), w, x) := w is continuous and F2 is discrete, so
Gw := c−1

G (w) is clopen in G for each w ∈ F2. We now show that E is a twist over G.
Proposition 3.13. Define ı : X × T → E by ı(x, z) := (ε, (x, z)), and define π : E → G by

π(w, c) :=
(
αw(p

(w)(c)), w, p(w)(c)
)
. Then X × T ı−→ E π−→ G is a twist over G.

Proof. We use the definition of a twist given in [6, Definition 3.1] (see also [1, Remark 2.6]).
We have E (0) = ı(X×{1}), and ı is a continuous groupoid homeomorphism onto the open set
ı(X×T) = Eε = π−1(Gε) that restricts to a homeomorphism of unit spaces. To see that π is a
homomorphism, fix

(
(w, c), (w′, c′)

)
∈ E (2). Then (c, c′) ∈ C(w,w′), so p(w)(c) = αw′

(
p(w

′)(c′)
)
.

Write cc′ := ψw,w′([c, c′]). By Equation (3.8), p(ww′)(cc′) = p(w
′)(c′), and so

π(w, c) π(w′, c′) =
(
αw(p

(w)(c)), w, p(w)(c)
)(
αw′(p(w

′)(c′)), w′, p(w
′)(c′)

)
=

(
αw(p

(w)(c)), ww′, p(w
′)(c′)

)
=

(
αww′(p(w

′)(c′)), ww′, p(w
′)(c′)

)
=

(
αww′(p(ww′)(cc′)), ww′, p(ww′)(cc′)

)
= π(ww′, cc′) = π

(
(w, c)(w′, c′)

)
,

and hence π is a groupoid homomorphism. Since p(w) is a continuous surjection, π is a con-
tinuous surjection. For all x ∈ X, π(ε, (x, 1)) = (x, ε, x), so π restricts to a homeomorphism
of unit spaces. To see that π is an open map, first note that for each w ∈ F2, it follows by
local triviality of the principal T-bundle p(w) : B(w) → X that p(w) is an open map (using
an argument similar to the proof of [1, Lemma 2.7(a)]). So for each fixed w ∈ F2 and any
open set V ⊆ B(w), we have π({w} × V ) = {(αw(x), w, x) : x ∈ p(w)(V )}, which is open in
G because p(w)(V ) is open in X. Since E has the disjoint union topology, it follows that π
is an open map. To see that the extension is central, fix x, y ∈ X, z ∈ T, and (w, c) ∈ E
such that

(
ı(x, z), (w, c)

)
,
(
(w, c), ı(y, z)

)
∈ E (2). Then x = αw

(
p(w)(c)

)
= αw(y), and by

Lemma 3.6(a), ψε,w

(
[(x, z), c]

)
= z · c = ψw,ε

(
[c, (y, z)]

)
. Thus,

ı(x, z) (w, c) = (ε, (x, z))(w, c) = (w, z · c) = (w, c)(ε, (y, z)) = (w, c) ı(y, z),

so ı(X × T) is central in E . □

Remark 3.14. For (x,w, y) ∈ G, we have αw(x) = y. Hence (x,w, y) 7→ (w, y) is a homeo-
morphism G → F2 ×X that carries each Gw onto {w}×X. Thus sb : Gb ∋ (x, b, x) 7→ x ∈ X
and jb : B

(b) ∋ c 7→ (b, c) ∈ Eb are homeomorphisms that satisfy sb ◦ π|Eb ◦ jb = p(b), where
p(b) : B(b) → X is our original nontrivial principal T-bundle p : B → X from Section 3.1.

3.5. Studying the isotropy and proving the desired properties. In this section we
prove that the twist of Proposition 3.13 is not induced by a 2-cocycle, even when restricted
to the interior of the isotropy. For a groupoid G, let IG denote the topological interior of
its isotropy Iso(G) = {γ ∈ G : r(γ) = s(γ)}. Define the “a-counting map” ℓa : F2 → Z to be
the homomorphism defined on generators a, b ∈ F2 by

ℓa(a) = 1 and ℓa(b) = 0.

Lemma 3.15. For the groupoid G = X ⋊α F2 defined in Section 3.4, we have

IG = Iso(G) =
⊔

w∈ker(ℓa)

Gw ≃ X × ker(ℓa) and IE = π−1(IG) = Iso(E) =
⊔

w∈ker(ℓa)

Ew.

Proof. By definition,

Iso(G) = {(αw(x), w, x) : x ∈ X, w ∈ F2, αw(x) = x}.
Since the T-bundle p(b) : B(b) → X is nontrivial, X is not discrete, and in particular, every
dense subset of X is infinite. Thus, if σℓa(w) = αw(x) = x, then minimality of σ implies that
ℓa(w) = 0 (for if ℓa(w) > 0 then the orbit of x under σ is finite). Thus

Iso(G) = {(x,w, x) ∈ G : x ∈ X, w ∈ F2, ℓa(w) = 0} =
⊔

w∈ker(ℓa)

Gw
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is homeomorphic to X × ker(ℓa). Since Gw = c−1
G (w) is open in G for each w ∈ F2, Iso(G) is

a union of open sets and is therefore open, and so IG = Iso(G).
By the proof of [1, Corollary 2.11(b)], we have IE = π−1(IG) = π−1(Iso(G)) = Iso(E).

Since π−1(Gw) = Ew for each w ∈ F2, it follows that

IE = π−1(IG) =
⊔

w∈ker(ℓa)

π−1(Gw) =
⊔

w∈ker(ℓa)

Ew. □

Lemma 3.16. The restricted twist π|IE : IE → IG is not induced by a 2-cocycle.

Proof. Suppose for contradiction that π|IE : IE → IG comes from a 2-cocycle. Then π|IE

admits a continuous global section Σ: IG → IE . By Lemma 3.15, Gb ⊆ IG and Eb =
π−1(Gb) ⊆ IE . So Σ|Gb

is a continuous section for π|Eb : Eb → Gb. By Remark 3.14, this gives
a continuous section for p : B → X contradicting that p : B → X is nontrivial. □
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